
Resilient Byzantine Fault-Tolerance
Using Multiple Trusted Execution Environments

Markus Becker, October 14, 2021

Institute of Operating Systems
and Computer Networks



Byzantine Agreement

Goal: Reach consensus across multiple machines
Application: State-Machine Replication (SMR)

Agree & Order requests
Execute deterministic operation

Byzantine Failures
Malicious party exhibits arbitrary behaviour

Fault Tolerant Systems
Resilient against Byzantine Failures
Operates correctly despite faults

October 14, 2021 Markus Becker Resilient Byzantine Fault-Tolerance Page 2



Byzantine Fault Tolerant (BFT) Protocols

Example protocol: PBFT M. Castro and B.
Liskov ’99
1. Replicated nodes act as servers
2. Client sends request
3. Communication rounds between

replicas
Ordering and agreement
Requires n ≥ 3f + 1 for f faults

4. Client receives responses
5. Client performs voting on results

October 14, 2021 Markus Becker Resilient Byzantine Fault-Tolerance Page 3



BFT Protocol Deployment

Usage in permissioned Blockchains
BFT for ordering and agreement
BaaS: Nodes & Infrastructure by cloud provider

Amazon Managed Blockchain
Azure Blockchain Service

Agreement using specific protocol

But we do not want to have to trust the cloud provider!

October 14, 2021 Markus Becker Resilient Byzantine Fault-Tolerance Page 4



Trusted Execution

Features of most Trusted Execution Environments (TEEs):
Execution of signed code on third parties machine

Local and remote attestation
Confidentiality over host

Fully hardware-encrypted memory
Reduced the chance of bugs

Small TCB

But we still have to assume Byzantine failures!

October 14, 2021 Markus Becker Resilient Byzantine Fault-Tolerance Page 5



Intel Secure-Guard-Extensions (SGX)

Trusted Execution Environment
Extension of x86
Exclusively on Intel CPUs
Transparently encrypted memory
Ring-3 only execution
(Remote) Attestation

But enclaves can still contain bugs
(or have other weaknesses)

1

1Weichbrodt et al., AsyncShock: Exploiting Synchronisation Bugs in Intel SGX
Enclaves, (ESORICS’16)

October 14, 2021 Markus Becker Resilient Byzantine Fault-Tolerance Page 6



Robustness

Reduce chance that practical BFT system enters irreparable state.

Ordinary
Increase number of replicas
Use safe programming
strategies / frameworks
Diversification (Lazarus’19)

Code & OS
Hardware
Passwords
Admins

Rejuvenation

Invasive
Trusted Execution

No golden bullet
Small validated TCB
Interface with OS needed

Separation by functionality
Logically
Physically

October 14, 2021 Markus Becker Resilient Byzantine Fault-Tolerance Page 7



BFT Partitioning

Naïve Solution:
Entire protocol in TEE

Problem:
 Attacks on enclave

Solution:
Separate agreement protocol

 Attacker in enclave⇒ liveness
 Attacker in f enclaves⇒ safety & liveness

Depend on quorum decisions for safety

October 14, 2021 Markus Becker Resilient Byzantine Fault-Tolerance Page 8



Thesis Goals

Combination of robustness features as SplitBFT
Trusted Execution (SGX) in stronger fault model
Separating into independent compartments

Goals
Improve safety & resilience using TEEs

Tolerate up to f faults per compartment type
Keep confidentiality as long as possible

Sensitive data in only one compartment type

October 14, 2021 Markus Becker Resilient Byzantine Fault-Tolerance Page 9



Requirements for SplitBFT

Split PBFT into small protocol units for compartments:

Performance
Efficient memory management
Avoiding SGX overhead
Efficient shim

Safety
Independent compartments
Security-sensitive functions
isolated
Eliminating shared state

October 14, 2021 Markus Becker Resilient Byzantine Fault-Tolerance Page 10



Compartmentalization

Splitting State-Machine-Replication
SMR is often physically split into Clients and Replicas
Replicas are logically split into Agreement and Execution (SOSP’03)

We recognise further opportunity to split based on quorum decisions:

BFT −→ Clients + Replicas

Replica −→ Agreement + Execution

Agreement −→ Preparation + Confirmation

October 14, 2021 Markus Becker Resilient Byzantine Fault-Tolerance Page 11



SplitBFT: Normal Operation

Preparation, Confirmation, Execution

1. Collect symmetrically encrypted operations in untrusted memory
Only client and execution compartment can decrypt

2. Liveness decisions outside of compartments
3. Verify fine-grained asymmetric signatures in compartments
4. Follow PBFT-like operation

October 14, 2021 Markus Becker Resilient Byzantine Fault-Tolerance Page 12



Compartment’s responsibilities

1. Preparation:
⇐ Receive requests, pre-prepares
� Order requests
⇒ Send pre-prepares, prepares

2. Confirmation:
⇐ Receive ≥ 2f prepares
⇒ Send commits

3. Execution:
⇐ Receive ≥ 2f + 1 commits
� Execute requests
⇒ Send replies

October 14, 2021 Markus Becker Resilient Byzantine Fault-Tolerance Page 13



Option: Execution & Application split

October 14, 2021 Markus Becker Resilient Byzantine Fault-Tolerance Page 14



Checkpointing and View-Changes

Design consideration:
Independence
Safety based on quorums

Garbage-collection & liveness:
Checkpoints

Application state only in Execution compartments
Allows removing old messages

View-Changes
View required in all compartments
Cannot trust a global variable or even local “View-Compartment”

⇒ New-View messages are broadcast to all compartments

October 14, 2021 Markus Becker Resilient Byzantine Fault-Tolerance Page 15



Fault Model

Faulty enclave escapes to replica
Faulty replica cannot enter enclave
Independent faults in enclaves
Require quorum to advance protocol

⇒ Integrity as long as at most f faults per enclave type
⇒ Confidential as long as execution compartments non-faulty

October 14, 2021 Markus Becker Resilient Byzantine Fault-Tolerance Page 16



Themis

IBR’s own BFT Framework!
Written in Rust: memory-safe, systems language
Protocols:

PBFT
Railchain

Implemented applications:
Benchmark-Counter
YCSB-KVS

October 14, 2021 Markus Becker Resilient Byzantine Fault-Tolerance Page 17



Implementation

1. Setup for Teaclave SGX SDK
2. Integration into Themis

Dependencies, dependencies, dependencies
3. Structured communication between TCB and Themis
4. Applications

October 14, 2021 Markus Becker Resilient Byzantine Fault-Tolerance Page 18



Setup

Rust nightly-2021-02-17
Themis @master
Teaclave SGX SDK >1.1.3
1.1.3 incompatible with Themis
master incompatible with SGX World

⇒ Own SGX World forks & docs + wiki
bytes-sgx, ring-sgx, serde-sgx, msgpack-rust-sgx, ...

October 14, 2021 Markus Becker Resilient Byzantine Fault-Tolerance Page 19



SGX Broker Layer

Compatible management
structure for enclaves
Efficient memory management
Minimize SGX overhead
Translation layer between
Themis and TCB
Deciding
asynchronous/synchronous
operation

October 14, 2021 Markus Becker Resilient Byzantine Fault-Tolerance Page 20



Adaptation of KV-Store implementation
Writing TCB to allow swapping of non-SGX and SGX SMR without
changing the client:

YCSB 
Client Themis Application 

Wrapper
KV-Store 

Crate

YCSB 
Client Themis E/O Call 

Interface
KV-Store 
Crate*

SGX 
Broker

Wrapping for transparent interation with Themis is non-trivial

October 14, 2021 Markus Becker Resilient Byzantine Fault-Tolerance Page 21



Evaluation

Benchmarking #[no_std] crates in
SGX
Deploying and measuring integration
tests
Measure with benchmark application
Measure with YCSB-KVS application

Example benchmark of hashing inside enclaves.

October 14, 2021 Markus Becker Resilient Byzantine Fault-Tolerance Page 22



Benchmark Application

Compare PBFT against SplitBFT
Replicated on ssgx machines

4× Intel Xeon E3-1230 v5
1 Gbps
32 GB RAM
94.5 MiB EPC Size

Threaded clients on dsgx machines
4× Intel Core i7-6700
1 Gbps
24 GB RAM

October 14, 2021 Markus Becker Resilient Byzantine Fault-Tolerance Page 23



Benchmark Application

October 14, 2021 Markus Becker Resilient Byzantine Fault-Tolerance Page 24



Benchmark Application Evaluation

Cost of ECalls and OCalls spread across requests when batching
Performance bottleneck: Sending replies

PBFT replying to batch
1. Create reply & sign

2. Network send (serialize)

SplitBFT replying to batch
1. Create reply & sign
2. Batch with other replies
3. Serialize batch
4. Perform OCall
5. Deserialize OCall batch
6. Network send (serialize)

October 14, 2021 Markus Becker Resilient Byzantine Fault-Tolerance Page 25



Benchmark Application Evaluation

Comparison without Batching
ECalls and OCalls of ordering each
request individually dominate
performance.

October 14, 2021 Markus Becker Resilient Byzantine Fault-Tolerance Page 26



Benchmark Application Evaluation

Comparison without Batching
ECalls and OCalls of ordering each
request individually dominate
performance.

October 14, 2021 Markus Becker Resilient Byzantine Fault-Tolerance Page 26



YCSB-KVS Application

Distributed benchmark
Data store benchmark

Realistic access patters (SoCC ’10)
SplitBFT vs. PBFT in Themis
Application is in-memory KVS

Workload
1. Load phase

Insert data
2. Run phase

Reads & Updates

October 14, 2021 Markus Becker Resilient Byzantine Fault-Tolerance Page 27



YCSB-KVS Evaluation

October 14, 2021 Markus Becker Resilient Byzantine Fault-Tolerance Page 28



Conclusion

Design and implementation of SplitBFT in Themis
SGX broker and enclave maintainable and exchangeable
Distributed evaluations in hardware mode against PBFT

Future Work
More applications in SplitBFT
Further optimizations and fast-tracks

October 14, 2021 Markus Becker Resilient Byzantine Fault-Tolerance Page 29


	Background
	Motivation
	Design
	Implementation
	Evaluation
	Conclusion

