Institute of Operating Systems
and Computer Networks

t| g% Technische
2 Universitat
o .
< Braunschweig

Resilient Byzantine Fault-Tolerance

Using Multiple Trusted Execution Environments

Markus Becker, October 14, 2021

Byzantine Agreement

= Goal: Reach consensus across multiple machines
= Application: State-Machine Replication (SMR)

= Agree & Order requests
= Execute deterministic operation

Byzantine Failures

= Malicious party exhibits arbitrary behaviour

Fault Tolerant Systems
» Resilient against Byzantine Failures

= Operates correctly despite faults

Node

Node

Traitor

Node

October 14, 2021| Markus Becker | Resilient Byzantine Fault-Tolerance | Page 2

Byzantine Fault Tolerant (BFT) Protocols

Example protocol: PBFT M. Castro and B.
Liskov ‘99 Node
1. Replicated nodes act as servers

2. Client sends request Node
3. Communication rounds between Client
replicas
* Ordering and agreement Node

= Requires n > 3f + 1 for f faults

4. Client receives responses Traitor

5. Client performs voting on results

October 14, 2021| Markus Becker | Resilient Byzantine Fault-Tolerance | Page 3

BFT Protocol Deployment

Usage in permissioned Blockchains

» BFT for ordering and agreement
» BaaS: Nodes & Infrastructure by cloud provider

» Amazon Managed Blockchain
* Azure Blockchain Service

» Agreement using specific protocol

But we do not want to have to trust the cloud provider!

October 14, 2021| Markus Becker | Resilient Byzantine Fault-Tolerance | Page 4

Trusted Execution

Features of most Trusted Execution Environments (TEEs):
» Execution of signed code on third parties machine
* Local and remote attestation
» Confidentiality over host
= Fully hardware-encrypted memory
= Reduced the chance of bugs
= Small TCB

But we still have to assume Byzantine failures!

October 14, 2021| Markus Becker | Resilient Byzantine Fault-Tolerance | Page 5

Intel Secure-Guard-Extensions (SGX)

= Trusted Execution Environment
Application

Extension of x86

Exclusively on Intel CPUs

Transparently encrypted memory

= Ring-3 only execution Operating System
= (Remote) Attestation
Hardware
But enclaves can still contain bugs cru | | [rav |

(or have other weaknesses)

"Weichbrodt et al., AsyncShock: Exploiting Synchronisation Bugs in Intel SGX
Enclaves, (ESORICS’16)

October 14, 2021| Markus Becker | Resilient Byzantine Fault-Tolerance | Page 6

Robustness

Reduce chance that practical BFT system enters irreparable state.

Ordinary Invasive

= Increase number of replicas = Trusted Execution

= No golden bullet

= Small validated TCB

* Interface with OS needed

= Separation by functionality

= Use safe programming
strategies / frameworks
= Diversification (Lazarus’ig)
» Code & OS

= Hardware : :;EgIFaHIT
= Passwords ysieally
= Admins

= Rejuvenation

October 14, 2021| Markus Becker | Resilient Byzantine Fault-Tolerance | Page 7

BFT Partitioning

Naive Solution:
= Entire protocol in TEE
Problem:

4 Attacks on enclave

Solution:
» Separate agreement protocol
4 Attacker in enclave = liveness
4 Attacker in f enclaves = safety & liveness

= Depend on quorum decisions for safety

Technische

Universitit October 14, 2021| Markus Becker | Resilient Byzantine Fault-Tolerance | Page 8
Braunschweig

Thesis Goals

Combination of robustness features as SplitBFT
» Trusted Execution (SGX) in stronger fault model

= Separating into independent compartments

Goals
» Improve safety & resilience using TEEs
= Tolerate up to f faults per compartment type
= Keep confidentiality as long as possible
= Sensitive data in only one compartment type

October 14, 2021| Markus Becker | Resilient Byzantine Fault-Tolerance | Page o

Requirements for SplitBFT

Split PBFT into small protocol units for compartments:

Performance Safety
» Efficient memory management = Independent compartments
» Avoiding SGX overhead » Security-sensitive functions
» Efficient shim isolated

= Eliminating shared state

October 14, 2021| Markus Becker | Resilient Byzantine Fault-Tolerance | Page 10

Compartmentalization

Splitting State-Machine-Replication
= SMR is often physically split into Clients and Replicas
= Replicas are logically split into Agreement and Execution (SOSP’03)

We recognise further opportunity to split based on quorum decisions:
BFT — Clients + Replicas

Replica — Agreement + Execution

Agreement — Preparation + Confirmation

Technische

niversitit October 14, 2021| Markus Becker | Resilient Byzantine Fault-Tolerance | Page 11

SplitBFT: Normal Operation

Preparation, Confirmation, Execution

request | pre-prepare | prepare | commit | reply view-change | new-view
- T T " T L]
Client N 7 B :
P —— W i T T

Replfca 0 prfmary v :‘\‘\ '« A 4 [" / :
Replica 1 = primary v+1 |\\‘< \\4 z 1 '
Replica 2 - 1

VRN 4D 47D % _ —5
Replica 3 viewy (i :'_ L "mma.] N view v+1*

1. Collect symmetrically encrypted operations in untrusted memory
* Only client and execution compartment can decrypt

2. Liveness decisions outside of compartments

3. Verify fine-grained asymmetric signatures in compartments
4. Follow PBFT-like operation

Technische

Universitit

October 14, 2021| Markus Becker | Resilient Byzantine Fault-Tolerance | Page 12
Braunschweig

Compartment’s responsibilities

1. Preparation:
< Receive requests, pre-prepares

O Order requests
= Send pre-prepares, prepares /

2. Confirmation:)
Preparation Preparation
< Receive > 2f prepares
= Send commits — T — Gonfirmaton

3. Execution:
< Receive > 2f + 1 commits
O Execute requests
= Send replies

Execution

Replica 2 Replica 3

Replica 0 Replica 1

+ Technische
R m—rers
Universitat October 14, 2021| Markus Becker | Resilient Byzantine Fault-Tolerance | Page 13

Braunschweig

Option: Execution & Application split

(1): Unified Exec & App

(2): Split Exec & App

Replicas
Broker Broker
A
*1
Prep. Conf. Exec. Prep. Conf. Exec. App.
Technische
Univer: October 14, 2021| Markus Becker | Resilient Byzantine Fault-Tolerance | Page 14

Braunschweig

Checkpointing and View-Changes

Design consideration:
= Independence
» Safety based on quorums

Garbage-collection & liveness:
= Checkpoints
= Application state only in Execution compartments
= Allows removing old messages
= View-Changes

= View required in all compartments
= Cannot trust a global variable or even local “View-Compartment”

= New-View messages are broadcast to all compartments

Technische
October 14, 2021| Markus Becker | Resilient Byzantine Fault-Tolerance | Page 15

Universitit

Fault Model

= Faulty enclave escapes to replica
= Faulty replica cannot enter enclave
» Independent faults in enclaves
= Require quorum to advance protocol
= Integrity as long as at most f faults per enclave type
= Confidential as long as execution compartments non-faulty

Technische

Universitat October 14, 2021| Markus Becker | Resilient Byzantine Fault-Tolerance | Page 16
Braunschweig

Themis

IBR’s own BFT Framework!

= Written in Rust: memory-safe, systems language
= Protocols:

« PBFT

= Railchain
= Implemented applications:

» Benchmark-Counter
= YCSB-KVS

Technische

Universitat October 14, 2021| Markus Becker | Resilient Byzantine Fault-Tolerance | Page 17
Braunschweig

Implementation

=]

. Setup for Teaclave SGX SDK

. Integration into Themis
= Dependencies, dependencies, dependencies

N

3. Structured communication between TCB and Themis

. Applications

~

Technische

Universitat October 14, 2021| Markus Becker | Resilient Byzantine Fault-Tolerance | Page 18
Braunschweig

Setup

= Rustnightly-2021-02-17
= Themis @nmaster

= Teaclave SGX SDK >1.1.3

= 1.1.3 incompatible with Themis
= master incompatible with SGX World

= Own SGX World forks & docs + wiki

= bytes-sgx, ring-sgx, serde-sgx, msgpack-rust-sgx, ...

October 14, 2021| Markus Becker | Resilient Byzantine Fault-Tolerance | Page 19

SGX Broker Layer

SGX Switchless E-Call | O-Call

» Compatible management

@

structure for enclaves

= Efficient memory management £

= Minimize SGX overhead <

* Translation layer between m P

Themis and TCB »]
* Deciding '

asynchronous/synchronous
operation [o e

—» Switchless SGX Call —— Bi-Directional Channel

I,
e
3

October 14, 2021| Markus Becker | Resilient Byzantine Fault-Tolerance | Page 20

Adaptation of KV-Store implementation

Writing TCB to allow swapping of non-SGX and SGX SMR without
changing the client:

YCSB) Application KV-Store
) Themis

Client Wrapper Crate
YCSB — sGx |i| E/ocall | Kv-Store
Client Broker |:| Interface Crate*

Wrapping for transparent interation with Themis is non-trivial

Technische

Universitit October 14, 2021| Markus Becker | Resilient Byzantine Fault-Tolerance | Page 21
Braunschweig

Evaluation

» Benchmarking #[no_std] crates in
SGX

» Deploying and measuring integration

Nanoseconds/Request

tests
= Measure with benchmark application FE A)

Operation

» Measure with YCSB-KVS application

Example benchmark of hashing inside enclaves.

Technische

October 14, 2021| Markus Becker | Resilient Byzantine Fault-Tolerance | Page 22
Braunschweig

Benchmark Application

Compare PBFT against SplitBFT

= Replicated on ssgx machines
= 4X% Intel Xeon E3-1230 v5
= 1 Gbps
» 32 GB RAM
* 94.5 MiB EPC Size

» Threaded clients on dsgx machines
= 4X Intel Core i7-6700
* 1 Gbps
» 24 GB RAM

October 14, 2021| Markus Becker | Resilient Byzantine Fault-Tolerance | Page 23

Benchmark Application

RPS with Batching Latency with Batching
35000 4 —— SplitBFT batched 100 1 " —J— SplitBFT batched
—f— PBFT batched —F— PBFT batched
30000 A 80 4
25000 A
2 601
» 20000 - é
o o
c
15000 g 40
10000
20+
5000 -
o 0 _/_/,sg\r__,———/"
100 200 300 400 100 200 300 400
of clients # of clients
Technische
Universitit October 14, 2021| Markus Becker | Resilient Byzantine Fault-Tolerance | Page 24

Braunschweig

Benchmark Application Evaluation

» Cost of ECalls and OCalls spread across requests when batching
* Performance bottleneck: Sending replies

PBFT replying to batch SplitBFT replying to batch
1. Create reply & sign 1. Create reply & sign
Batch with other replies
Serialize batch

Perform OCall
Deserialize OCall batch

Network send (serialize)

oSowv B~ W N

2. Network send (serialize)

Technische

Universitit October 14, 2021| Markus Becker | Resilient Byzantine Fault-Tolerance | Page 25
Braunschweig

Benchmark Application Evaluation

RPS without Batching

4000 -
3500 \\‘d’_/
]) . 3000
Comparison without Batching
. 2500 4
ECalls and OCalls of ordering each ., —I— SplitBFT unbatched
. .. . o
request individually dominate = 2000+ —E— PBFT unbatched
performance. 1500
1000 A
500 _/\
1(I)0 Z(I)O 3(I)0 4(I)0
of clients

October 14, 2021| Markus Becker | Resilient Byzantine Fault-Tolerance | Page 26

Benchmark Application Evaluation

Latency without Batching

1000 1"~ SpIitBFT unbatched
—F— PBFT unbatched
800 -
Comparison without Batching ﬂ
ECalls and OCalls of ordering each § 6001
request individually dominate 2 400
performance. =
200 +
0_//
1(‘)0 Z(I)O 3(I)0 4(I)0
of clients

October 14, 2021| Markus Becker | Resilient Byzantine Fault-Tolerance | Page 26

YCSB-KVS Application

Distributed benchmark Workload
» Data store benchmark 1. Load phase
= Realistic access patters (SoCC "10) = Insert data
= SplitBFT vs. PBFT in Themis 2. Run phase

= Application is in-memory KVS " Reads & Updates

October 14, 2021| Markus Becker | Resilient Byzantine Fault-Tolerance | Page 27

YCSB-KVS Evaluation

YCSB KVS benchmark (50% read 50% update) YCSB KVS read percentage
4001 — paFT —— PBFT
—— SplitBFT 260~ SPHBFT

350
° °
5 300 § 240
8 8
3 2
g 2
o 20 w 220
2 2
2 2
T T
§ 200 g
& & 200

150

180
100
2 4 6 8 10 12 14 16 0% 20% 40% 60% 80% 100%
threads read percentage
3% Technische
R m—rers
%» Universitat October 14, 2021| Markus Becker | Resilient Byzantine Fault-Tolerance | Page 28

Braunschweig

Conclusion

= Design and implementation of SplitBFT in Themis
= SGX broker and enclave maintainable and exchangeable

= Distributed evaluations in hardware mode against PBFT

Future Work
= More applications in SplitBFT
= Further optimizations and fast-tracks

October 14, 2021| Markus Becker | Resilient Byzantine Fault-Tolerance | Page 29

	Background
	Motivation
	Design
	Implementation
	Evaluation
	Conclusion

