
Low Latency Byzantine Agreement Using RDMA

Markus Becker, 30. August 2019

Institute of Operating Systems and Computer Networks

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Byzantine Agreement

Goal: reach consensus
Application: distributed systems

Byzantine Failures
Malicious party exhibits arbitrary behaviour

Fault Tolerant Systems
Resilient against Byzantine Failures
Operates correctly despite faults

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 2 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Byzantine Fault Tolerant (BFT) Protocols

Example protocol: PBFT [M. Castro and B. Liskov, 1999]

1. Replicated nodes act as servers
2. Client sends request
3. Communication rounds between

replicas take place
Fast paced data transfer occurs

4. Client receives responses
5. Client performs voting on results

Requires n ≥ 3f + 1 for f faults

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 3 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Reptor [J. Behl, T.Distler, R. Kapitza, 2015]

BFT Framework
Written in Java
Implements multiple BFT protocols
Highly customizable layer structure

Features
Highly optimized and parallelized
Based on asynchronous operations
Very performant but limited by the network

Possible bottlenecks
Latency
Bandwidth
CPU Busy

⇒ Already optimized for TCP
⇒ Add network cards and connections
⇒ Cause fewer interrupts

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 4 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Reptor [J. Behl, T.Distler, R. Kapitza, 2015]

BFT Framework
Written in Java
Implements multiple BFT protocols
Highly customizable layer structure

Features
Highly optimized and parallelized
Based on asynchronous operations
Very performant but limited by the network

Possible bottlenecks
Latency
Bandwidth
CPU Busy

⇒ Already optimized for TCP
E Add network cards and connections
E Cause fewer interrupts

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 4 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Remote Direct Memory Access (RDMA)
Using RDMA1 offers:

Low latency
Around 1 µs latency
Grows with message size

High bandwidth
Up to 56 Gb/s per port

CPU bypass
Accessing remote memory
Skip OS to network buffer copy
Generates notifications

1Mellanox Whitepaper (2015)

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 5 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

RUBIN [S. Rüsch, I. Messadi, R. Kapitza, 2018]

Network layer for Reptor
Generalized to work for Java applications with minimal redesign

Java NIO Selector
Multiplexes channels
Supports blocking and non-blocking access
Aware of channel state and capabilities
Used by Reptor

Problem
Buffer copies can be avoided

RUBIN performs unnecessary buffer copies
RDMA requires flow control

RUBIN is unstable

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 6 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Thesis Goals

Goals
1. Implement copy free memory management

Additional data safeties
Performant management structure

2. Resolve flow control issue
Introduce scheme which does not exhaust available buffers

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 7 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Design

Memory management
Copy free send and receive

Requires new memory structure
Performance critical
Integration with RDMA

Flow control
RDMA requires redesign

New flow control scheme
Preparing buffers in time
Never exhaust all buffers

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 8 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Memory Management

Requirements
Integrate into Reptor’s existing design

Global memory management
Replacing lambda object
Used to allocate new memory on demand

Provide safeties against overwriting
Allow use with RDMA

Memory location and size is fixed

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 9 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Memory Management: Ring Buffer

Pro
Resizing buffers
Better utilization of allocated memory

Con
Tracking usage is complex
Overhead when using with RDMA

Data structure for specific part of buffer

Pointer usage in Java unidiomatic

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 10 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Memory management: Buffer Ring

Pro
Simple and robust
Easy integration in Reptor
Allows tracking of usage
Map to send and receive with RDMA

Con
Sets maximum message size

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 11 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Reason for Implementing Flow Control

Back Pressure
Receiving more messages than can be dealt with
Dealing with excess incoming messages:

Dropping messages
Buffering
Preparing buffers faster
Sharing information and waiting

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 12 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Flow Control Problem

Not consuming messages in time
1. Data may get overwritten
2. RDMA buffers may be exhausted

Using two-sided operations like RUBIN:
Exhausting buffers causes crash
No checks in place if data consumed

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 13 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Receive Window

Similar to sliding window
Communicate local capabilities
Send update to remote on change
Only send if remote is capable to receive
⇒ Back pressure can be completely avoided

Buffer ring can be utilized

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 14 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Flow Control
Additional requirements

Minimize overhead
No additional communication rounds
Same communication channel
Piggyback on normal messages

Avoid starvation
Allow emergency flow control messages

Application agnostic

Not needed by using RDMA
Sequencing
Negative acknowledgements

Error correction
Replaying messages

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 15 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Implementation

Based on rdma-reptor project
Implementation in Java 8 under Ubuntu 14.04
Using Java RDMA library DiSNI

RUBIN was built on top of DiSNI 1.4
Since then DiSNI 2.0 and 2.1 have been released

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 16 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Upgrading DiSNI

Large changes from 1.4 to 2.0
RUBIN patched directly on top of DiSNI

Attempts
1. Patching DiSNI directly again
2. Creating a wrapper for DiSNI 2.0

Implementation continued with RUBIN using DiSNI 1.4.

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 17 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Memory Management Stages

1. Management Classes
ManagedRingBuffer
+ Interfaces and abstract classes
ManagedBuffer
– Access safety
– RDMA integration
NativeByteBuffer
– Java’s ByteBuffer clone

2. Integration in Reptor
3. Tests and Benchmarks

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 18 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Memory Management Stages

1. Management Classes
2. Integration in Reptor

Replacing lambda object
Adapt Reptor classes
Provide compatibility
Change memory usage behaviours

3. Tests and Benchmarks

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 18 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Memory Management Stages

1. Management Classes
2. Integration in Reptor
3. Tests and Benchmarks

Driving motivation
Microbenchmark everything
Tests for all new classes
Fine-tune for performance

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 18 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Flow Control Specifics

Limit changes to network layer1
• In-line with RUBIN’s original goals
• Most changes in RDMA channel handler (1053 cloc1)
• Small changes to RUBIN (35 cloc1)
• A handful of lines in Reptor (15 cloc1)
Main obstacle

Rejection of messages at network layer not in Reptor’s design

1Only including flow control implementation

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 19 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Error State in Flow Control

Throw exception when illegal state reached
1. Message tried to be sent by application
2. Flow control algorithm blocking
• Exception allows compile time checking

Exception handling
• Buffering
• Handling flow control exceptions in Reptor
• Avoiding flow control exceptions by changing RUBIN

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 20 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Error State in Flow Control

Throw exception when illegal state reached
1. Message tried to be sent by application
2. Flow control algorithm blocking
• Exception allows compile time checking

Exception handling
E Buffering
E Handling flow control exceptions in Reptor

⇒ Avoiding flow control exceptions by changing RUBIN

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 20 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Changes to RUBIN

RUBIN aware of writable channel status
Channel updates status when blocked
Channel determines own status by counting messages

Parties append capabilities to each message
At most 8 bytes of flow control data
Capabilities of local channel

RDMA channels interpret flow control data
Never exhaust remote capabilities
Send flow control message to avoid starvation

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 21 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

New state of RDMA Channel
Remote capabilities

Updated when receiving a message

Remote’s knowledge of local capabilities
Outdated by consuming and preparing buffers
A flow control message can be sent to avoid imminent starvation
Only send flow control message if necessary

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 22 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Evaluation

Memory Management
Microbenchmarks

Flow Control
Distributed connection test
Replicated system benchmark

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 23 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Memory Management Benchmarks

Type Iterations Round [s] Dev. [s] GC calls GC time [s]
Native 103 0.09 0.04 10 0.03
Ring 103 0.08 0.02 12 0.03

Ring contains 1000 buffers
Compare access times
Native: • Allocating ByteBuffer
Ring: • Iterating through Ring

• Allocate internal buffers lazily

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 24 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Memory Management Benchmarks

Type Iterations Round [s] Dev. [s] GC calls GC time [s]
Native 105 9.62 0.56 1142 3.21
Ring 105 0.10 0.02 14 0.05

Iterating 100 ring lengths shows performance advantage
Performance increases over longer runtime

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 25 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Memory Management Benchmarks

Type Iterations Write Round [s] Dev. [s] GC calls GC time [s]
Native 105 No 9.62 0.56 1142 3.21
Ring 105 No 0.10 0.02 14 0.05
Native 105 Yes 10.6 0.72 1142 3.48
Ring 105 Yes 0.10 0.02 14 0.04

Writing to memory to simulate use with RDMA
Ruling out compiler optimization invalidating results

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 26 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

System Configuration
Machines beagle1, beagle4@Ubuntu 14.04
CPU Intel®Xeon®E5-2430 v2 @ 2.5GHz
RAM 16GB DDR3
OFED v4.2-1.2.0
RNIC Mellanox MT27520 Family ConnectX®-3

Image from mellanox.com

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 27 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Flow Control Benchmarks

1. Distributed connection test
2. Replicated system benchmark

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 28 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Flow Control Benchmarks

1. Distributed connection test
Ping-Pong application
Using Reptor’s communication stack
Uses new flow control and memory management
Sending and checking counter value
Benchmarking flow control at different buffer sizes

2. Replicated system benchmark

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 28 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Flow Control Benchmarks

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 28 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Flow Control Benchmarks

1. Distributed connection test
2. Replicated system benchmark

Using PBFT with client sending empty requests
Not distributed during this thesis
– Problems with configuration across machines
– Used 4 local replicas with 1 client
Using new memory management
Using new flow control scheme

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 28 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Flow Control Replicated Benchmark

200

400

600

800

1000

1200

1400

1600

Pr
oc

es
se

d
ro

un
ds

 [H
z]

RPS
RPS (Baseline)

1 2 3 4 5 6 7 8 9 10
Runtime [s]

1000

2000

3000

4000

5000

La
te

nc
y

[µ
s]

Latency
Latency (Baseline)

System benchmark comparing against RUBIN baseline

Negative performance impact notable
Cost of added stability
Latency only increased slightly

Baseline crashes frequently
Buffer copies show low overall impact
RDMA overall still not fully utilized

TCP implementation still superior

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 29 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Conclusion

Memory Management
Constant memory footprint management structure
Integration in Reptor and RUBIN

Enables idiomatic usage with RDMA in Java
Stable, with safety features

Very performant in microbenchmarks
Flow Control

Network layer based flow control scheme implemented
Eliminated crashes due to back pressure

Evaluation
Increased stability
Reduced throughput caused by flow control overhead

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 30 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

One-sided Operations

The back pressure problem could be solved by using one-sided
operations, if it was not for:

The Java NIO Selector functionality would be harder to provide
No notifications would be generated

Memory locations could be polled
A different communication channel could be used for notifications

The network layer would have to undergo large changes
Instead of sending messages it would write or read memory directly

30. August 2019 Markus Becker Low Latency Byzantine Agreement Using RDMA Page 31 of 30

Institute of Operating Systems
and Computer Networks

	Motivation
	Design
	Implementation
	Evaluation
	Conclusion

