Institute of Operating Systems
and Computer Networks

2 Universitat

) . o .
t,% o Braunschweig
sc¥

Low Latency Byzantine Agreement Using RDMA

Markus Becker, 30. August 2019

Institute of Operating Systems and Computer Networks

Motivation Design pl ion luati C

Byzantine Agreement

= Goal: reach consensus

» Application: distributed systems

Node — Node

Byzantine Failures

» Malicious party exhibits arbitrary behaviour

Fault Tolerant Systems

= Resilient against Byzantine Failures

» Operates correctly despite faults e

2% Technische

Universitat 30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 2 of 30
Braunschweig

Institute of Operating Systems
and Computer Networks

Motivation Design pl ion luati Concl

Byzantine Fault Tolerant (BFT) Protocols

Example protocol: PBFT [m. castro and 8. Liskoy, 1999]

Node

1. Replicated nodes act as servers

2. Client sends request

3. Communication rounds between
replicas take place Client

= Fast paced data transfer occurs Node

Node

4. Client receives responses
5. Client performs voting on results
= Requires n > 3f + 1 for f faults

Traitor

30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 3 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design p ion i G

Reptor [J. Behl, T.Distler, R. Kapitza, 2015]

BFT Framework

Written in Java

= Implements multiple BFT protocols
Highly customizable layer structure

Features

= Highly optimized and parallelized

» Based on asynchronous operations

= Very performant but limited by the network

Possible bottlenecks

Latency = Already optimized for TCP
Bandwidth = Add network cards and connections
CPU Busy = Cause fewer interrupts

Technische

Universitat 30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 4 of 30
Braunschweig

Institute of Operating Systems
and Computer Networks

Motivation Design p ion i G

Reptor [J. Behl, T.Distler, R. Kapitza, 2015]

BFT Framework

Written in Java

= Implements multiple BFT protocols
Highly customizable layer structure

Features

= Highly optimized and parallelized

» Based on asynchronous operations

= Very performant but limited by the network

Possible bottlenecks

Latency = Already optimized for TCP
Bandwidth ¢ Add network cards and connections
CPU Busy ¢ Cause fewer interrupts

Technische

Universitat 30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 4 of 30
Braunschweig

Institute of Operating Systems
and Computer Networks

Motivation Design pl ion luati Concl

Remote Direct Memory Access (RDMA)
Using RDMA! offers:

Low latency Application
= Around 1 ps latenc .
,P Y) Sesgion

= Grows with message size
High bandwidth Tran ;port
= Up to 56 Gb/s per port
CPU bypass NetWOl‘k
= Accessing remote memory

. RDMA NIC

= Skip OS to network buffer copy

= Generates notifications !

!Mellanox Whitepaper (2015)

Technische
% Universitit 30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 5 of 30

Braunschweig

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

RU BI N [S. Riisch, I. Messadi, R. Kapitza, 2018]

= Network layer for Reptor
» Generalized to work for Java applications with minimal redesign

Java NIO Selector

Multiplexes channels

Supports blocking and non-blocking access
Aware of channel state and capabilities
Used by Reptor

Problem
= Buffer copies can be avoided

= RUBIN performs unnecessary buffer copies
= RDMA requires flow control

= RUBIN is unstable

Technische

Univer: 30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 6 of 30
Braunschweig

Institute of Operating Systems
and Computer Networks

Motivation Design pl ion luati Conclusi

Thesis Goals

Goals

1. Implement copy free memory management

= Additional data safeties
= Performant management structure

2. Resolve flow control issue
» Introduce scheme which does not exhaust available buffers

30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 7 of 30

Institute of Operating Systems
and Computer Networks

Design

Memory management Flow control

= Copy free send and receive = RDMA requires redesign
= Requires new memory structure = New flow control scheme
= Performance critical = Preparing buffers in time
= Integration with RDMA = Never exhaust all buffers

30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 8 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design pl ion luati Conclusi

Memory Management

Requirements
= Integrate into Reptor’s existing design

= Global memory management |
= Replacing lambda object
= Used to allocate new memory on demand

= Provide safeties against overwriting |
= Allow use with RDMA
= Memory location and size is fixed

30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 9 of 30

Institute of Operating Systems
and Computer Networks

Design pl i luati Conclusi

Memory Management: Ring Buffer

Pro
» Resizing buffers

= Better utilization of allocated memory

Con

= Tracking usage is complex
» Overhead when using with RDMA
= Data structure for specific part of buffer

= Pointer usage in Java unidiomatic

Technische

Universitat 30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 10 of 30
Braunschweig

Institute of Operating Systems
and Computer Networks

Motivation Design p ion i G

Memory management: Buffer Ring

Pro

Simple and robust

Easy integration in Reptor

Allows tracking of usage
Map to send and receive with RDMA
Con

= Sets maximum message size

Technische

Universitat 30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 11 of 30
Braunschweig

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

Reason for Implementing Flow Control

Back Pressure
= Receiving more messages than can be dealt with

» Dealing with excess incoming messages:

= Dropping messages

= Buffering

= Preparing buffers faster

= Sharing information and waiting

Technische

Universitat 30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 12 of 30
Braunschweig

Institute of Operating Systems
and Computer Networks

Motivation Design p ion i C

Flow Control Problem

= Not consuming messages in time

1. Data may get overwritten
2. RDMA buffers may be exhausted

Using two-sided operations like RUBIN:

» Exhausting buffers causes crash

~ =
A\)
= No checks in place if data consumed K

Technische

Universitat 30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 13 of 30
Braunschweig

Institute of Operating Systems
and Computer Networks

Motivation Design pl ion luati Conclusi

Receive Window

Similar to sliding window

» Communicate local capabilities

Send update to remote on change
Only send if remote is capable to receive
= Back pressure can be completely avoided

= Buffer ring can be utilized

Manager

Technische
Universitat 30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 14 of 30
Braunschweig

Institute of Operating Systems
and Computer Networks

Motivation Design

ion i C

Flow Control

Additional requirements
» Minimize overhead
= No additional communication rounds
= Same communication channel
= Piggyback on normal messages
= Avoid starvation
= Allow emergency flow control messages

= Application agnostic

Not needed by using RDMA

= Sequencing

» Negative acknowledgements
= Error correction
= Replaying messages

Technische

Universitat 30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 15 of 30
Braunschweig

Institute of Operating Systems
and Computer Networks

Implementation

Implementation

» Based on rdma-reptor project

» Implementation in Java 8 under Ubuntu 14.04
» Using Java RDMA library DiSNI

= RUBIN was built on top of DiSNI 1.4
= Since then DiSNI 2.0 and 2.1 have been released

Technische

Universitat 30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 16 of 30
Braunschweig

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation ~Conclusion

Upgrading DiSNI

= Large changes from 1.4 to 2.0
= RUBIN patched directly on top of DiSNI

Attempts
1. Patching DiSNI directly again
2. Creating a wrapper for DiSNI 2.0

Implementation continued with RUBIN using DiSNI 1.4.

Technische

Universitat 30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 17 of 30
Braunschweig

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation ~Conclusion

Memory Management Stages

ManagedMemory

I ManagedBufferRing |
1. Management Classes
= ManagedRingBuffer
+ Interfaces and abstract classes Y
. ManagedBufFer ManagedBuffer
— Access safety
— RDMA integration
= NativeByteBuffer -
, ManagedByteBuffer | l NativeByteBuffer |
— Java’s ByteBuffer clone

ByteBuffer
Univer:

30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 18 of 30
Braunschweig

Technische

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation ~Conclusion

Memory Management Stages

1. Management Classes |
2. Integration in Reptor
= Replacing lambda object
= Adapt Reptor classes
= Provide compatibility |
= Change memory usage behaviours

L |

Technische
Universitat 30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 18 of 30
& Braunschweig))
Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation ~Conclusion

Memory Management Stages

= Driving motivation
= Microbenchmark everything
= Tests for all new classes

3. Tests and Benchmarks = Fine-tune for performance

1. Management Classes

2. Integration in Reptor

30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 18 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation ~Conclusion

Flow Control Specifics

= Limit changes to network layer!
« In-line with RUBIN’s original goals
+ Most changes in RDMA channel handler (1053 cloc!)
« Small changes to RUBIN (35 cloct)
« A handful of lines in Reptor (15 cloct)

= Main obstacle
= Rejection of messages at network layer not in Reptor’s design

1Only including flow control implementation

Technische

Universitat 30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 19 of 30

Braunschweig))
Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation ~Conclusion

Error State in Flow Control

Throw exception when illegal state reached
1. Message tried to be sent by application
2. Flow control algorithm blocking

« Exception allows compile time checking

Exception handling

« Buffering

« Handling flow control exceptions in Reptor

« Avoiding flow control exceptions by changing RUBIN

Technische
13

Univer: 30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 20 of 30
Braunschweig))
Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation ~Conclusion

Error State in Flow Control

Throw exception when illegal state reached
1. Message tried to be sent by application
2. Flow control algorithm blocking

« Exception allows compile time checking

Exception handling
¢ Buffering
¢ Handling flow control exceptions in Reptor

= Avoiding flow control exceptions by changing RUBIN

Technische

Universitat 30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 20 of 30

Braunschweig))
Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation ~Conclusion

Changes to RUBIN

= RUBIN aware of writable channel status

= Channel updates status when blocked
= Channel determines own status by counting messages

= Parties append capabilities to each message

= At most 8 bytes of flow control data
= Capabilities of local channel

= RDMA channels interpret flow control data

= Never exhaust remote capabilities
= Send flow control message to avoid starvation

Padding Capabilities

Technische

Universitat 30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 21 of 30
Braunschweig

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation ~Conclusion

New state of RDMA Channel

Remote capabilities

= Updated when receiving a message

Remote’s knowledge of local capabilities
» Outdated by consuming and preparing buffers
= A flow control message can be sent to avoid imminent starvation

= Only send flow control message if necessary

Local e I [[e]

Requires Update

Cemote knovldge

30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 22 of 30

Braunschweig

Institute of Operating Systems
and Computer Networks

Evaluation

Evaluation

Memory Management

= Microbenchmarks

Flow Control
= Distributed connection test

= Replicated system benchmark

Technische

Universitat 30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 23 of 30
Braunschweig

Institute of Operating Systems
and Computer Networks

Motivation Design pl ion Evaluation Concl

Memory Management Benchmarks

| Type [lterations [Round[s] | Dev. [s] | GCcalls | GCtime[s] |
Native 10° 0.09 0.04 10 0.03
Ring 103 0.08 0.02 12 0.03

= Ring contains 1000 buffers

» Compare access times
Native: « Allocating ByteBuffer
Ring: « Iterating through Ring
« Allocate internal buffers lazily

30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 24 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design pl ion Evaluation Concl

Memory Management Benchmarks

| Type | lterations | Round[s] | Dev.[s] | GCcalls | GCtime[s] |

Native 10° 9.62 0.56 1142 3.21
Ring 10° 0.10 0.02 14 0.05

= |terating 100 ring lengths shows performance advantage

= Performance increases over longer runtime

3 Technische

30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 25 of 30

Institute of Operating Systems
and Computer Networks

Memory Management Benchmarks

Motivation Design Implementation Evaluation Conclusion

| Type [lterations [Write | Round [s] | Dev. [s] [GCcalls | GCtimes] |

Native 10° No 9.62 0.56 1142 3.21
Ring 10° No 0.10 0.02 14 0.05
Native 10° Yes 10.6 0.72 1142 3.48
Ring 10° Yes 0.10 0.02 14 0.04

» Writing to memory to simulate use with RDMA

» Ruling out compiler optimization invalidating results

30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 26 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design pl ion Evaluation Ce

System Configuration

Machines beaglel, beagle4 @ Ubuntu 14.04
CPU Intel®Xeon®E5-2430 v2 @ 2.5GHz
RAM 16GB DDR3

OFED v4.2-1.2.0

RNIC Mellanox MT27520 Family ConnectX®-3

—

Image from mellanox.com

Technische

Universitat 30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 27 of 30
Braunschweig

Institute of Operating Systems
and Computer Networks

ion Evaluation ~ Conclusi

Motivation Design

Flow Control Benchmarks

1. Distributed connection test

2. Replicated system benchmark

30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 28 of 30

Institute of Operating Systems
and Computer Networks

Motivation Design ion Evaluation ~ Conclusi

Flow Control Benchmarks

1. Distributed connection test
= Ping-Pong application
= Using Reptor’s communication stack
= Uses new flow control and memory management
= Sending and checking counter value
= Benchmarking flow control at different buffer sizes

2. Replicated system benchmark

30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 28 of 30

Institute of Operating Systems
and Computer Networks

Fl

Rounds [Hz]

Design p i i Ce

ow Control Benchmarks

Connection Test: Buffer Capacity Impact

---------- R S S T G 2 S ARG NG

105 4

-}- RPS @ 68KB (Baseline)
—}— RPS @ 1KB

—— RPS @ 4KB

—J— RPS @ 8KB

—}— RPS @ 16KB

—}— RPS @ 32KB

-
o
=

10°) W

1/_’—/‘_/—*\’-*

10° 10! 102
Runtime [s]

102

Technische
Universitat 30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 28 of 30

Braunschweig

Institute of Operating Systems
and Computer Networks

Motivation Design ion Evaluation ~ Conclusi

Flow Control Benchmarks

1. Distributed connection test

2. Replicated system benchmark
= Using PBFT with client sending empty requests
= Not distributed during this thesis
— Problems with configuration across machines
— Used 4 local replicas with 1 client
= Using new memory management
= Using new flow control scheme

30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 28 of 30

Institute of Operating Systems
and Computer Networks

ion Evaluation ~ Conclusi

Motivation Design

Flow Control Replicated Benchmark

System benchmark comparing against RUBIN baseline
1600

—— RPS }
14004 —¥- RPS (Baseline) A
£ 1200 ?/%\\ %,"?
2 1000 s Nl . .
g x ! » Negative performance impact notable
g oo ii = Cost of added stability
g = Latency only increased slightly
200
= Baseline crashes frequently
5000 Latency !) .
=X tateney Eneine) = Buffer copies show low overall impact
4000
E » RDMA overall still not fully utilized
Z 30001 %
g = TCP implementation still superior
~ 2000 ¥
RN
1000 \i“—i___!,,l—__l___!___*

1 2 3 4 5 6 7 8 9 10
Runtime [s]

30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 29 of 30

Institute of Operating Systems
and Computer Networks

Conclusion

Conclusion

Memory Management

= Constant memory footprint management structure
®» [ntegration in Reptor and RUBIN

= Enables idiomatic usage with RDMA in Java

= Stable, with safety features

= Very performant in microbenchmarks

Flow Control

= Network layer based flow control scheme implemented
= Eliminated crashes due to back pressure

Evaluation

= Increased stability

» Reduced throughput caused by flow control overhead

Technische

Universitat 30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 30 of 30
Braunschweig

Institute of Operating Systems
and Computer Networks

Motivation Design Implementation Evaluation Conclusion

One-sided Operations

The back pressure problem could be solved by using one-sided
operations, if it was not for:
= The Java NIO Selector functionality would be harder to provide
» No notifications would be generated

= Memory locations could be polled
= A different communication channel could be used for notifications

» The network layer would have to undergo large changes
= Instead of sending messages it would write or read memory directly

Technische

Universitat 30. August 2019 | Markus Becker | Low Latency Byzantine Agreement Using RDMA | Page 31 of 30

Braunschweig))
Institute of Operating Systems
and Computer Networks

	Motivation
	Design
	Implementation
	Evaluation
	Conclusion

