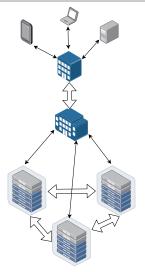


Microsecond Replication for Microsecond Applications

Markus Becker, January 18, 2021

Performance of Distributed Applications


Need for Microsecond Applications:

- ultra-low latency
- high throughput
- high availability

Approach

Distribute application with fail-over:

- Iow-latency
- consistency

Microsecond Applications

Applications

- Distributed Caches
- Key-Value Stores
- Lock-Services
- Financial Trading
- Order Matching

Examples

- Redis
- Memcached
- Apache Zookeeper
- Liquibook

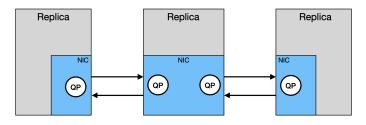
- Datacenters run on commodity hardware
 - Failure prone
- Highly parallel execution
- Large amounts of system memory available
- Specialized high-performance network available
 - Fast switches, links and network cards
 - Remote Direct Memory Access

A Promising Networking Technology

Remote Direct Memory Access (RDMA)

Mellanox ConnectX-5 QSFP28x2 NIC (RDMA capable)

- Read and write directly in remote RAM
- Bypass CPU & Kernel
- Saturate network capabilities
- Access permission system
- Asynchronous
- Latency of 1-3 µs
- Bandwidth of up to 200Gbps
- \Rightarrow use RDMA to reduce latency



Contents

- Motivation
- Related Works
- Design
 - Mu
 - Hermes
- Evaluation
- Conclusion

RDMA Procedural Overview

- Hosts initialize RDMA Connection ⇒ Queue Pair (QP)
 - 1. Queue: Work Request (WR)
 - 2. Queue: Work Completion (WC) Events
- App and Network Interface Card (NIC) communicate with QP
 - 1. Memory areas have to be registered before use
 - 2. CPU posts WR
 - 3. NIC performs action and posts WC

Replication Protocols

Consensus Protocols

- Algorithm for sharing state
- Safety & Liveness guarantees

Membership-based Protocol

Consensus + Replicas
+ Fail-Over

 \Rightarrow Hermes

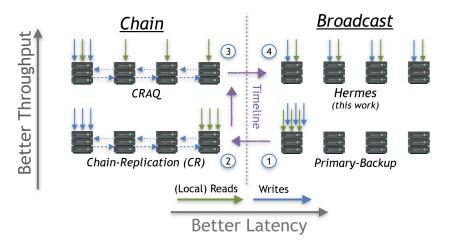
State Machine Replication (SMR)

- Use consensus protocol to synchronize log
 - Safety
 - Liveness
 - Ordering \Rightarrow Strong Consistency
- Apply log as input to deterministic application
- Replicas in identical state

 \Rightarrow Mu

Existing RDMA-based Systems

Membership-based Protocol

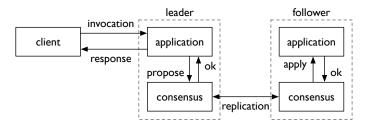

- ZAB^[Junqueira et al., IEEE/IFIP'11]
 - rZAB
- CR / CRAQ^[Terrace et al., USENIX'09]
 - rCRAQ

SMR System

- Raft
 - HovercRaft^[Kogias et al., EuroSys'20]
- Paxos
 - DARE^[Poke et al., HPDC'15]
 - APUS^[Wang et al., SoCC'17]

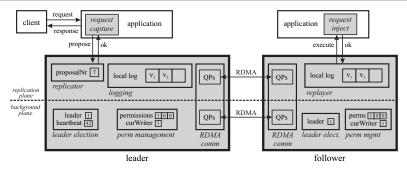
Closer Look at Membership-based Protocols

January 18, 2021 | Markus Becker | Page 10 Microsecond Replication for Microsecond Applications


Design

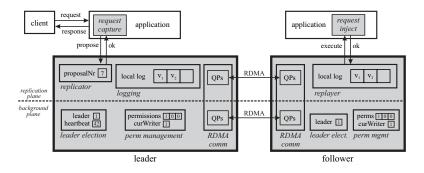
1. Mu: State Machine Replication System

- Consensus Protocol
- Strong Consistency
- Minimizing latency
- 2. Hermes: Reliable Broadcast Protocol
 - Strong Consistency
 - Cheap to scale


Leader-based Replication

- 1. Create Replicas (nodes) running State Machines
- 2. Choose Leader to receive client requests
- 3. Leader orders and replicates requests to followers
- 4. Replicas apply requests to own State Machine

Mu - Application of RDMA



Replicas are connected by two RDMA Connections (Queue Pairs)

- 1. Leader writes message buffers directly into followers logs
- 2. Followers check heartbeat of leader through one-sided reads

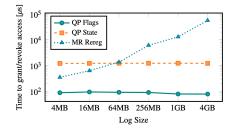
Mu - Failure Detection

Largest occurring latency on leader failure #

- Fast permission change critical for low-latency operation!
- If heartbeat stagnates or connection crashes elect new leader
- Followers check heartbeat value of leader extremely frequently

New Leader: Follower with lowest Node-ID

Mu - Permission Switch Survey


On failure

- 1. Revoke permission from old leader
- 2. Grant permission to new leader

Permission switch mechanics

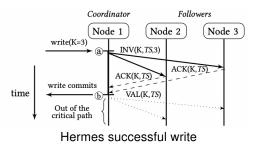
- QP Flags: Global permission change
- QP State: Re-Initialize Queue Pair
- MR Rereg:

Dereg. and Rereg. buffers

Hermes

Invalidating Replication protocol with datastore application in mind.

Membership-based protocol


- Acknowledge each write: "read-one/write-all"
- Parallel reads
- Parallel writes ź bottleneck in ZAB, CRAQ, ...
- Leaderless *f* bottleneck in ZAB, *CRAQ*, ...
- Strong-consistency
 - Safety
 - Liveness
 - Ordering
 - \Rightarrow Completed writes are accessible everywhere

Hermes - Writes

Any replica can initiate write!

- 1. Become Coordinator for write
- 2. Send Invalidation containing:
 - Key
 - Value
 - Logical timestamp
- 3. Collect Acknowledgements
- 4. Validate after receiving Acknowledgements
- 5. Swap object value
- \Rightarrow On collision: lower node-id wins

Invalidated:

Write is currently in progress or has failed. Attempt to initiate a **write-replay**:

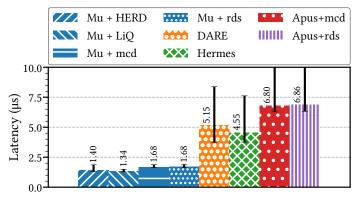
- 1. Send Invalidation with:
 - Requested key
 - Local object value
 - Timestamp of failed write
- 2. Proceed like a write
- 3. If **write-replay** succeeds resolve read with local value, else return error

Validated:

Any replica can return the contents without further communication.

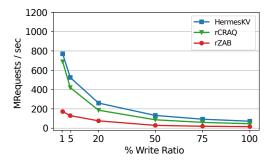
For common operation this is default and very fast!

Evaluation


Mu replicating State Machines on 4-node cluster

2x Intel Xeon E5-2640 v4 @ 2.40GHz
2x 128GiB
Mellanox Connect-X 4
100 Gbps Infiniband
Mellanox MSB7700 EDR 100 Gbps
Ubuntu 18.04.4 LTS 4.15.0-72-generic
Mellanox OFED 4.7-3.2.9.0

Hermes also run on weaker 7-node cluster


Evaluation: Mu

- Benchmarked replicating:
 - In-memory data-stores: HERD, memcached, redis
 - Order matching service: Liquibook
- Mu achieves best-in-class latency

Evaluation: Hermes

Benchmarks based on specially developed HermesKV (RDMA in-memory distributed key-value store)

- Reads: 2µs 15µs
- Writes: 29µs 42µs (3.9× faster than rCRAQ)

January 18, 2021 | Markus Becker | Page 21 Microsecond Replication for Microsecond Applications

Conclusion

- Hermes and Mu provide state-of-the-art replication
- Both require currently datacenter-only hardware
- Slightly different use-case

Mu SMR System

- + Ultra low-latency
- + Extremely simple leader-change
- + Easy to use (plug-and-play)
- Possibly bottlenecked by leader

Hermes Replication Protocol

- + Easily load-balanced
- + Profits from higher parallelism
- Requires application to be build with protocol in mind

Sources

- M. K. Aguilera, N. Ben-David, R. Guerraoui, V. J. Marathe, A. Xygkis, and I. Zablotchi, "Microsecond consensus for microsecond applications," 2020.
- [2] A. Katsarakis, V. Gavrielatos, M. S. Katebzadeh, A. Joshi, A. Dragojevic, B. Grot, and V. Nagarajan, "Hermes: A fast, fault-tolerant and linearizable replication protocol," *Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems*, Mar 2020. [Online]. Available: http://dx.doi.org/10.1145/3373376.3378496
- [3] Mellanox, "Benefits of Remote Direct Memory Access Over Routed Fabrics," Tech. Rep., 2018. [Online]. Available: https://www.mellanox.com/related-docs/solutions/benefits-of-RDMA-over-routed-fabrics.pdf
- [4] C. Wang, J. Jiang, X. Chen, N. Yi, and H. Cui, "Apus: fast and scalable paxos on rdma," 09 2017, pp. 94–107.
- [5] M. Poke and T. Hoefler, "Dare," Proceedings of the 24th International Symposium on High-Performance Parallel and Distributed Computing - HPDC '15, 2015. [Online]. Available: http://dx.doi.org/10.1145/2749246.2749267
- [6] L. Lamport, "Paxos made simple," ACM SIGACT News (Distributed Computing Column) 32, 4 (Whole Number 121, December 2001), pp. 51–58, December 2001. [Online]. Available: https://www.microsoft.com/en-us/research/publication/paxos-made-simple/

