
Master’s Thesis

Resilient Byzantine
Fault-Tolerance Using

Multiple Trusted Execution
Environments

Markus Horst Becker, B. Sc.
�. October, ����

Institute of Operating Systems and Computer Networks
Prof. Dr. Rüdiger Kapitza

Supervisor:
Ines Messadi, M. Sc.

Statement of Originality

This thesis has been performed independently with the support of my supervisor/s. To
the best of the author’s knowledge, this thesis contains no material previously published
or written by another person except where due reference is made in the text.

Braunschweig, �. October, ����

Abstract

Agreement protocols enable a number of connected machines to o�er a service while tol-
erating some faulty members. The goal is to keep liveness and safety properties for as
many faults as possible. Considering Byzantine Fault Tolerance at least 3 f + 1 machines
are needed to tolerate f faults. Through trusted execution technology parts of code can be
protected against certain attacks but we recognize that novel attacks and bugs will always
present a weakness. We aim to provide a resilient solution for applying trusted execu-
tion technologies in this stronger fault model by splitting the PBFT protocol into sepa-
rate compartments. By compartmentalizing an agreement protocol we split the trust and
power of each compartment, limiting the e�ect of a faulty compartment, and withstand
more total faults. Our S����BFT protocol allows for faulty compartments on all repli-
cas, provided that at most f of any type of compartment are faulty across all replicas. We
design and analyze S����BFT based on PBFT split into three compartments. Our evalua-
tion shows that in real-world deployments the compartmentalization add relatively small
overheads and the gained integrity and confidentiality come at a low cost.

Page 1 of 2

Technische Universität
Braunschweig
Institut für Betriebssysteme und
Rechnerverbund

Verteilte Systeme

Mühlenpfordtstr. 23
38106 Braunschweig
Deutschland

Prof. Dr.
Rüdiger Kapitza

Tel. +49 (0) 531 391-3294
Fax +49 (0) 531 391-5936
kapitza@ibr.cs.tu-bs.de
www.ibr.cs.tu-bs.de

Date: 01-04-2021

Mr. Markus Horst Becker
Matriculation Number : 4808448
Email-Address : markus.becker@tu-braunschweig.de
Course of Studies : Master Informatik

Task Description of the Master’s Thesis

Resilient Byzantine Fault-Tolerant Using Multiple Trusted
Execution Environments

Robuste Byzantine-Fehlertoleranz unter Verwendung mehrerer Trusted Execution
Environments

assigned to Mr. Markus Horst Becker.

Motivation

Byzantine fault-tolerant (BFT) systems can tolerate arbitrary faults, ranging from sys-
tem crashes to attacker-induced arbitrary behavior. In classical BFT protocols like PBFT,
3 f + 1 replicas are needed to address f Byzantine faults. Hybrid BFT protocols, on the
other side, use a small trusted subsystem that typically leverages trusted execution en-
vironments (TEE). It is assumed that it behaves correctly and can only fail by crashing,
e.g., by implementing a rather simple trusted monotonic counter. As the protocol can
use this trusted counter to prevent equivocation, i.e., a replica cannot send two con-
flicting messages to di�erent participants, the number of replicas can be reduced to
only 2 f + 1.

However, while with such a hybrid fault model the use of TEEs minimizes resource
usage and improves BFT protocols’ performance, it also raises concerns. Indeed, vul-
nerabilities have been identified in TEE-secured applications that may be exploitable
by an adversary. Weichbrodt et al. 1 shows that synchronization bugs allow an attacker
to gain control over an enclave. In a BFT setting, such bugs may corrupt an enclave of
a trusted subsystem and break the system assumptions, e.g., a trusted subsystem can
then send conflicting messages or return malicious execution results.

As part of this thesis, we intend to explore a di�erent direction. Instead of assuming
that code that is protected by a TEE can only fail by crashing – the protected code can
arbitrarily fail but only to a certain extend. To do this, it should be explored how a BFT
system can be partitioned in multiple TEE-protected compartments. These compart-
ments should be in the position to validate their inputs analogous to quorum decisions
of a classical BFT protocol such as PBFT. It is assumed that due to such an approach,
a BFT system can withstand more individual flaws in the program code and, as such,
become more resilient. However, this will likely only increase the integrity guarantees
and do not influence or improve the system’s liveness.

1Weichbrodt et al. "AsyncShock: Exploiting Synchronisation Bugs in Intel SGX Enclaves " Proceedings of
the 10th European Workshop on Systems Security. ACM, 2016.

Contents
List of Figures xi

List of Tables xiii

�. Introduction �
�.�. Thesis outline . �

�. Background �
�.�. Goals of Agreement . �

�.�.�. State Machine Replication . �
�.�. Byzantine Fault Tolerance . �

�.�.�. Fault Model . �
�.�.�. BFT Stages . �
�.�.�. Equivocation . ��
�.�.�. Application . ��
�.�.�. Deployment environment . ��
�.�.�. Practical Byzantine Fault Tolerance ��

�.�. Robustness . ��
�.�. Intel Software Guard Extensions . ��
�.�. T����� BFT Framework . ��

�.�.�. Agreement Protocol Interface . ��
�.�.�. Rust Programming Language . ��

�. Design ��
�.�. System Model . ��
�.�. S����BFT Protocol . ��

�.�.�. Normal-Case Operation . ��
�.�.�. Compartments . ��
�.�.�. View Changes . ��
�.�.�. Garbage Collection . ��
�.�.�. Encryption and Signatures . ��
�.�.�. Fault analysis . ��

�.�. Compartment Broker . ��
�.�.�. Compartment Interfaces . ��
�.�.�. Asynchronous Operation . ��

�.�. Application Compartments . ��

� C�������

�. Implementation ��
�.�. T����� BFT Framework . ��

�.�.�. Benchmark Application . ��
�.�.�. Key-Value Store Application . ��

�.�. Dependency Versioning . ��
�.�. Code Reuse . ��
�.�. Diversification . ��
�.�. ECall & OCall Interface . ��
�.�. Broker Implementation . ��
�.�. Enclave Implementation . ��

�.�.�. Protocol Messages . ��
�.�.�. Message Log . ��

�.�. Continous Integration . ��
�.�. Problems with the T����� framework . ��
�.��. Problems with the Teaclave SGX SDK . ��

�. Evaluation ��
�.�. Hashing Algorithm . ��
�.�. Trusted Computing Base Size . ��
�.�. Distributed Benchmarks . ��

�.�.�. Benchmark Applications . ��
�.�.�. YCSB Evaluation . ��

�. Related Work ��
�.�. Physical Separation . ��
�.�. Trusted Hardware . ��

�. Conclusion ��

Bibliography ��

A. Contents of the CD ��

List of Figures
�.�. Overview of example State Machine Replication system [�]. �
�.�. PBFT protocol steps [��] annotated with proposed compartment type: �.

green = Preparation, �. blue = Confirmation and �. red = Execution �
�.�. T�����’ high-level structure with asynchronous modules. [��] ��

�.�. Partitioning BFT Protocol into multiple compartments. ��
�.�. Decision matrix of using SGX switchless calls or ECalls and OCalls to call

into the enclave, and whether to have threaded handlers for each enclave
or call them directly from the layer above. ��

�.�. Variant of S����BFT with split of the execution enclave into BFT-protocol
execution and application execution environments. ��

�.�. Rust code structure added to T�����. ��
�.�. Adapting KV-Store application for S����BFT. The dotted line represents

the the trusted computing base’s boundary. ��
�.�. Serialization and communication scheme of protocol messages. ��

�.�. Time spent in enclave hashing requests in a di�erently sized list using dif-
ferent hashing algorithms. ��

�.�. Benchmark of hashing requests using di�erent available hashing algorithms
inside SGX enclaves. ��

�.�. Comparison of S����BFT’s local benchmark performance with and with-
out request batching enabled. ��

�.�. Comparison of S����BFT’s distributed benchmark performance with and
without request batching enabled. ��

�.�. short . ��
�.�. Relative RPS performance of PBFT over S����BFT ��
�.�. YCSB benchmark results for PBFT and S����BFT with YCSB default work-

load “a”. ��
�.�. YCSBbenchmark results for read percentage sweep using PBFT and S����BFT

with � clients and zipfian distribution . ��

List of Tables
�.�. Correct routing for S����BFT message types. “C.” abbreviates “compart-

ment”. This table is analogous to information shown in figure �.�. ��
�.�. Number and type of faults for figure �.� . ��

�.�. TCB size of separate compartments in di�erent metrics for the KVS appli-
cation. ��

�.�. Systems used for distributed benchmarks . ��

�. Introduction
Requirements on modern software systems often include high availability, integrity and
confidentiality. Availability can be easily improved by running a system distributed across
multiple machines. If a few machines fail the remaining machines can keep process-
ing requests. This can be seen in paradigms like micro services, containerization, edge-
computing and cloud computing in general. Availability is sustained as long as failures do
not spread across the entire system. Typically replicated, these distributed systems require
consistency depending on the application. Consistency can be achieved by ordering all
incoming requests. By totally ordering requests the system gains strong consistency [��].
In safety critical applications, however, the possibility of a faulty or exploitable member of
the distributed system needs to be tolerated [��]. Statemachine replication (SMR) is a gen-
eral approach to achieve consistency and fault tolerance for a distributed system [��]. It is
applied in several systems such as zookeeper [��, ��, �, �]. In those solutions an agreement
component is added to gain fault-tolerance. The SMR system and agreement protocol can
be specialized for the fault model to increase integrity and confidentiality. Depending
on the application and fault model, di�erent kinds of faults are expected and protected
against. Byzantine faults, for example, allow members of these protocols to behave arbi-
trarily bad. Tolerating Byzantine faults requires complicated protocol steps to withstand
these malicious members trying to disrupt the service. The protocols used to agree on the
order of requests and reach consensus in these conditions are called Byzantine fault toler-
ance (BFT) protocols [��, �]. BFT protocols have been studied since Lamport’s Byzantine
Generals Problem from ���� [��, �]. Variants of BFT protocols have been developed to be-
come faster, more flexible, resource-e�cient, safer and more specialized [�, ��, ��, ��, ��].
BFT protocols recently gained interest due to their relevance as a consensus algorithm
in permissioned blockchains. They can also be used in other secure transaction applica-
tions in which linearization and safety are important. As such, more possible applications
are being found in industries like logistics, retail and power as well as the administrative
domain [��, ��, ��]. Setting up these systems is a technically di�cult task requiring the
balance of safety and performance. This has lead companies to o�er Blockchain-as-a-
Service (BaaS) running on their infrastructure [��, ��]. The advantage is that a user does
not have to implement the complex back-end operations necessary, and the provider ben-
efits from the economy of scale. Using one of these o�erings introduces a large risk by
requiring trust in the provider.
Removing the need for trust can be partially achieved by enabling trusted execution

in the cloud [�]. Hardware-based trusted execution provides isolated and protected envi-
ronments that removes the need to trust the provider. Trusted execution environments
(TEEs) can be used to supplement BFTprotocols in the cloud to protect against the provider
abusing their local privileges and access. However, due to the complexity of agreement

� �. I�����������

protocols, further work is required to ensure a practical application of trusted execution
in the cloud for use with BaaS. Notably, large trusted computing bases (TCBs) present
a larger attack surface. While some applications can be put into TEEs entirely, access-
ing the network or other hardware devices requires the application to be split into a TEE
part and an untrusted part. BFT protocols are complex and require network communi-
cation. Therefore, BFT protocols need some interactions with the operating system to
communicate with other participants. We realize the opportunity to increase robustness
for integrity and confidentiality by separating the protocol into trusted compartments on
each machine. Reducing the size of the individual trusted compartments reduces TCB
size. Protecting the trusted compartments allows fine-grained control over safety-critical
application code. We utilizememory access protections on the compartment’s secure data
to protect confidentiality. However, we do not ignore the possibility of bugs or exploits
being present inside of the TEE’s code.

This thesis presents the S����BFT approachwhich separates BFT protocol components
into their own independent compartments. In this thesis we apply the S����BFTmethod
to the PBFT agreement protocol [�]. For this, we keep the structure and architecture of
PBFT but split its phases into multiple TEEs. We remove local trust, even between lo-
cal compartments on the same machine to allow independent failures of these compart-
ments. This allows us the tolerate more Byzantine faults than typical BFT protocols, as
we tolerate up to f faults of each compartment type for integrity. Which replicas these 3 f
faults are spread over is inconsequential for integrity. We also gain stronger confidential-
ity as all sensitive data is only present in once compartment on each replica. The design
and implementation of the S����BFT protocol is presented. We detail the process behind
structuring a complex but robust software system split across multiple TEEs and their
interaction with the untrusted software on multiple machines. Furthermore, practical
deployments of protocols need robustness to withstand bugs and exploits within TEEs,
which we show our compartmentalization improves. We will show this by presenting the
gain in safety and confidentiality by splitting the protocol into independent compart-
ments.

We implement S����BFT in the T����� agreement framework written in the Rust pro-
gramming language. Compartments are also implemented in Rust using Intel’s Secure
Guard Extensions (SGX) [��] and the Teaclave SGX SDK [�]. A modular implementation
of the compartments and their interface code enables easy diversification, even in di�er-
ent programming languages. While using TEEs in SGX enclaves incurs an overhead, our
implementation reduces this and achieves competitive performance.

Running both benchmark and real-world applications we evaluate S����BFT in a dis-
tributed environment to measure the impact of compartmentalization. By tailoring the
system to reduce the total overhead added by SGX using modern practices to speed up
BFT protocols we will compare S����BFT with PBFT in T�����.

�.�. T����� ������� �

�.�. Thesis outline
This remainder thesis is structured into the following chapters:

Chapter � Background introduces technologies andmethods used to design and im-
plement the S����BFT protocol. The focus is on the BFT-SMR background as well
as the TEE mechanism and limitations. A short overview of the T����� framework
is given.

Chapter � Design presents the design decisions in S����BFT and informs the fol-
lowing implementation in T�����. We lay out the compartmentalization method
for the PBFT protocol. Using a structured approach to obtain the compartments
for S����BFT, we analyze necessary safeguards and boundaries for the TEEs. The
messaging, signing and encryption schemes are presented, explained and discussed.

Chapter � Implementation covers the realisation of the design in the Rust program-
ming language as a module in the T����� framework. Implementation details that
require special attention because of performance and safety implications or limits
of the TEEs are discussed. This chapter also contains worked examples of selected
components of the larger system.

Chapter � Evaluation shows the benchmark results of the final system as well as
preliminary benchmarks informing implementation decisions during the design
and implementation process.

Chapter � Related Work outlines relevant previous and ongoing research and other
publications in this field. We use this opportunity to outline the main di�erences
of past research with the new S����BFT approach.

Chapter � Conclusion closes this thesis by summarizing S����BFT and the state of
its implementation within the T����� framework and gives an outlook on further
possible work using the presented methods.

�. Background
In this chapter we present the technologies and resources necessary to pursue the aim of
this thesis. As outlined in the introduction, this thesis aims to combine agreement proto-
cols with multiple TEEs to improve safety and confidentiality using a practical approach.
We begin with the motivation behind agreement protocols and their applications. To

reason about the e�ects of BFT protocols the fault model needs to be examined. Then
we define Byzantine fault tolerance from the perspective of our stronger fault model. Fi-
nally, this thesis makes use of SGX TEEs which have their own features and limitations
important for the remainder of the thesis.

�.�. Goals of Agreement
Modern applications often require large amounts of storage and compute power. Users
expect services to be accessible all the time and from around the world. Instead of build-
ing arbitrarily powerful monolithic machines and applications, the industry has moved
to spread large applications across multiple distributed weaker machines. This makes it
easier to react to changing requirements, as seen in cloud computing. More machines are
added to the pool if required by the demand or application. By ensuring machines fail
independently the availability of the system is also improved. When splitting the execu-
tion of any application across multiple separated machines it is a common goal to achieve
consensus or agreement. This agreement is used to ensure consistency. One way to reach
consistency is to order all requests across all machines. This is linearizabiliy. Ideally, the
distributed system behaves identically to a single monolithic deployment. Members of
an agreement protocol can guarantee that under good conditions the majority of other
members will agree with them on the current order of requests and their execution. This
can be used to construct a replicated service using deterministic state machines sharing
the same state. Most replicated services have three main goals, or attributes, to maintain
and preserve:

�. Availability: The replicated service is reachable by its users and accepts incoming re-
quests. Deadlocks need to be avoided. The delay between a request and its response,
and the throughput of the system may vary but never completely stop. The system
is guaranteed to reach a state in which it is able to continue processing requests at
some point. This means liveness is preserved.

�. Confidentiality: The contents of messages including requests and responses be-
tween the client and service are not leaked to a third party. The usual method to
increase confidentiality is applying encryption schemes. We assume that strong

�

cryptography cannot be attacked by an adversary directly. This means the adver-
sary cannot guess keys or shared secrets, or reverse the message from its ciphertext.
The adversary is also not able to fake a signature or find a collision in a cryptograph-
ically secure hashing function. However, if an adversary has taken over a participant
and can read its secrets, messages in the network can be decrypted or forged using
the leaked secret. This lets the adversary impersonate the compromised participant.
This is the case for both asymmetric and symmetric encryption, the scope of the con-
sequences is proportional to the number ofmembers sharing the secret. In practise,
both asymmetric and symmetric encryption are used in di�erent situations, using
asymmetric cryptography like RSA or symmetric encryption like message authenti-
cation code (MAC) for �-to-� channels [�].

�. Integrity: Messages and the shared state are tampered-proof. This is usually achieved
using cryptographic hashes and signatures. In the context of TEEs memory access
protections also aid in ensuring state is not tampered with by a third party. Message
integrity also includes the guarantee that messages cannot be forged. Even mem-
bers of the system have to be unable to create amessage that looks like it comes from
another member. This is necessary to be able to find a true majority for achieving
consensus. The common solution for this is also asymmetric cryptography for dig-
ital signatures or MACs. It is important to note that a tamper-proof message can
still contain incorrect or misleading data if the sender is malicious.

These three properties, combined with agreement allow a distributed system to outwardly
behave as a single fault-tolerant application.

�.�.�. State Machine Replication

SMR describes a systematic method of building a distributed system [��]. Each member
is modeled as a deterministic state machine. With the same initial state and deterministic
operations, all machines can be synchronized. For this to work it is important to ensure
that all replicas perform all operations in exactly the same order. Thismethod can be used
to define a very general mechanism for e�cient replication, checkpointing and recovery.

consensus

applicationclient

invocation

response

application

consensus
replication

propose
ok apply

ok

leader follower

Figure �.�.: Overview of example State Machine Replication system [�].

�.�. B�������� F���� T�������� �

Another advantage of SMR systems is that already deterministic applications can be
replicated using SMR with minimal changes [�]. Figure �.� shows an example architec-
ture with an application and the necessary consensus protocol for replication. In general,
the architecture of SMR systems consists of a small wrapper around the deterministic ap-
plication and a consensus component on each replica. Clients send their request, as usual,
to a singlemachine called the leader. The leader then distributes (replicates) the request to
all other machines, called the backups using the consensus component. After successful
linearization using an agreement protocol, the requests are executed deterministically on
all machines and the client receives the responses. Because the initial state and the order
of deterministic operations are identical all machines stay synchronized.

A large problem in SMR systems are failures on the replicated machines. This has cre-
ated a field of study on how to deal with faults in SMR. Depending on the fault model,
SMR systems must have di�erent safety precautions to operate correctly. The strongest
type of fault these systems may need to tolerate are Byzantine faults.

�.�. Byzantine Fault Tolerance

Byzantine fault tolerance describes a safety property of a distributed system. Members of
the system are required to reach a consensus even though a certain fraction of participants
are allowed to behave incorrectly [��, �, ��]. BFT can be combinedwith SMR, creatingBFT-
SMR systems [��], combining the distribution attributes of SMRwith the safety of BFT. In
these systems the consensus protocol is a BFT protocol. Behaving incorrectly in BFT pro-
tocols is defined as the participant experiencing a Byzantine fault that leads to arbitrary
behaviour. A faulty malicious member could pretend to behave correctly or lie about the
information it has received from others. This makes BFT one of the most general fault
models. Byzantine faults are the hardest type of failures to tolerate. The Byzantine Agree-
ment Problem originated from the Byzantine Generals Problem proposed by Lamport,
Shostak, and Pease [��]. Broadly, the Generals Problem is about communicating across
an unreliable channel. The Byzantine Generals Problem extends the problem to allow
participants to exhibit faulty behaviour. This is often personified as the Generals acting
maliciously, or in the worst possible way. The generals cannot trust each other or their
communication channel, but have to try to agree on a decision by sharing their opinion.
They, importantly, have to be able to form a majority of loyal participants as long as this
majority exists. The assumption about their communication channel is, in practice, that
sent messages do arrive, but can be arbitrarily delayed. BFT protocols, as presented here,
require participants to be known in advance and authenticated in some form. With an
arbitrary, but also finite, amount of authenticated clients. This means that BFT protocols
can be used in permissioned blockchains to agree on the state of the ledger.

�

�.�.�. Fault Model

There are two di�erent fault models commonly used in consensus protocols.

Crash fault: when a process encounters a fault it stops operating entirely. Crashed
participants will not take part in any further communication. This crash can be
caused by a hardware failure, a software bug, or the network connection being lost
entirely. When a node gets taken over under crash fault assumptions the adversary
will be unable tomake the node perform any other actions. In practice, this requires
further assumptions on the adversary or additional protections. Some hardware, for
example, is often assumed to only fail by crashing [��], instead of sending arbitrary
data. If we are also only considering accidental adversaries, turning o� the power
for the datacenter, for example, presents itself as a crash fault to the system. Some
systems that do not expect to be targeted bymalicious attackers at all can consider it
su�cient to be protected against crash faults. The lower stakes allow amore e�cient
implementation. However, crash fault tolerant protocols open themselves up to
novel attacks on the trusted subsystem [��].

Byzantine fault: when a process encounters a fault it can behave arbitrarily. The
Byzantine fault model is more general than the crash fault model. Faulty members
can continue operating as part of the system, but the behaviour can be adversarial. As
such, faultymembers can leak information, forgemessages or tamperwithmessages
on the network. The exact abilities of a faulty node is dependent on the deployment
and possible additional safety measures.

As Byzantine failures allow a participant to behave arbitrarily, it is a useful fault model
for computer systems, which can be hacked or interfered with. Faulty behaviour includes,
for example, delaying communications or lying about information concerning others.
Faulty members are also able to equivocate (see �.�.�), presenting di�erent information
to di�erent participants. The goal is to preserve consensus even if the faulty machines do
everything in their power to try to break consensus of the correctly behaving machines.
A replica encountering a software bug or hardware failure is also considered faulty, as

further operations might also be arbitrarily bad as a result of the failure. This leaves the
correctly behaving participants, which are not taken over by an adversary, and have not
encountered a software bug or hardware failure. Software bugs or flaky connectionsmight
still be present on correct replicas, just have not caused a fault yet.
BFT protocols are characterised by the number of faults they can tolerate and still reach

a consensus within the correctly behaving participants. In a system with n members,
where a majority is required to reach consensus a BFT protocol tolerates f Byzantine
faults. For the general Byzantine Problem the condition n � 3 f + 1 holds [��]. This
formula states a minimum number of replicas necessary to take part in the BFT commu-
nication to tolerate up to f failures.

�.�. B�������� F���� T�������� �

Through the use of additional new technologies, like trusted execution (see �.�), hybrid
models are protected against some faults. Hybrid and crash fault tolerant protocols may
only need n � 2 f + 1 machines to tolerate f faults.

Hybrid faults: o�er better performance than BFT protocols at an overhead com-
parable to crash-fault tolerant protocols [�, ��]. This is achieved by assuming that
Byzantine faults are avoided in a certain parts of the protocol. A trusted subsystem
might only be expected to fail by crashing. Proving the correctness of the trusted
subsystem is often required and very di�cult. Furthermore, for correct operation
the implementation of the protocol must be void of exploits.

�.�.�. BFT Stages

Correctly functioning state machines will reach the same decision given the same input,
and they need to be able to share their decision. The need to be able to form a majority.
If a replica is not faulty, then it will also send the correct response, and behave correctly
throughout all the BFT stages.

Figure �.�.: PBFTprotocol steps [��] annotatedwith proposed compartment type: �. green = Prepa-
ration, �. blue = Confirmation and �. red = Execution

Figure �.� shows all stages part of common agreement stages [��], including the separa-
tion proposed later in this thesis. The protocol usually composesmultiple inner protocols
for certain tasks. First the ordering protocol is used to order and agree on requests, but
checkpointing and view-change protocols are commonly used to provide garbage collec-
tion and maintain liveness. Additional protocols can be included to, for example, achieve
rejuvenation of previously faulty machines.

Ordering

The communication in BFT protocols often occurs in two rounds. First, the agreement
stage. After a request from a client is received, the request is broadcast across all replicas
and the order in which the replicas are processing the outstanding requests is agreed
upon by all replicas. This is the ordering part of BFT protocols. Ordering is necessary for
linearization. It ensures that a majority of correct machines agree on the order in which
requests are to be executed. Then the requests are executed in the so-called execution

��

stage and each replica sends the result of its computation back to the client. The PBFT
protocol uses three phases hpre-prepare, prepare, commiti to achieve this, as shown in
figure �.�.

Checkpointing

In addition to ordering and execution of requests, additional functions of BFT protocols
are necessary to keep real-world deployments from running out of memory. Checkpoint-
ing provides an opportunity for garbage collection as it marks a clean cut in the protocol
at which no references or memory of old data is necessary. It is also required because the
network is often assumed to be unreliable and checkpointing allows correct but delayed
machines to catch up again. Checkpointing allows a form of recovery from these network-
based failures. This involves the replicas sharing all the necessary data for new replicas
to join in, and also creates a state, which allows recovered replicas to continue participat-
ing. For this to work a proof that a majority of correctly functioning replicas agree on this
state is necessary. These checkpoints are created at regular intervals, usually based on the
number of processed requests.

View-change

Another point of failure, which endangers reaching a consensus, is which replica is con-
tacted by the clients. Instead of contacting a random one, the client often refers to a pub-
licly known leader. The leader is one of the replicas which receives the requests from
clients and initiates the ordering process. During the execution of the BFT protocol, the
replicas can request to change the leader if they suspect the leader to be faulty. Changing
the leader is done by changing the current view. Once enough requests to announce a
new leader have been collected by a replica it will assume the leader position has been
changed. This is called a view-change. The order in which the leader position rotates is
usually predetermined.
A faulty leader needs to be dismissed as leader because otherwise it could just delete

user requests. Clients who do not receive any response from the BFTmembers, therefore,
must timeout and try another replica or broadcast their request to all replicas [��].

�.�.�. Equivocation
A faultymember of an agreement protocol who is able to send conflictingmessages to oth-
ers is performing equivocation [��]. If an agreement protocol was able to prevent equiv-
ocation, the Byzantine fault tolerance would be improved, requiring only n � 2 f + 1
machines for f faults, instead of the more general n � 3 f + 1 [��]. However, current
research only allows for non-equivocating BFT protocols using either a (central) trusted
party or crash-fault TEEs. As our fault model allows TEEs to contain bugs, those solutions
would not be transferable to our model.
In our fault-model equivocation is expected to be possible.

�.�. B�������� F���� T�������� ��

�.�.�. Application

From the perspective of the client, only one message is sent to the replicas. This message
contains the request for the application to perform an operation. After the message has
been processed by the BFT protocol the application will perform the ordered requests
and generate replies. The client will accept a number of replies, at most one from each
replica. At some point, the client decides that it received enough responses and finds the
majority in the responses. It considers thatmajority to be the correct result. The condition
n � 3 f + 1, then, means that more than 2

3 of the distributed system behave correctly. The
additional correct replica is necessary in case the client misses the last response from a
correctly behaving replica. When the client performs the majority voting process on the
responses, it will still be able to find amajority of correct responses. This means the client
in a BFT-SMR system performs almost identical operations to the non-replicated version.
All the client needs to be aware of in addition is which replica to send requests to and how
many requests to wait for before voting starts.
This procedure is more complex than finding a consensus when the type of fault the

system needs to tolerate is limited to crash faults, as those are generally characterized by
n � 2 f + 1, requiring a lot fewer resources when the expected number of faulty replicas
is high.

�.�.�. Deployment environment

It is also assumed that the replicas di�er in all ways that enable contamination from one
faulty replica to the other functioning replicas. Byzantine faults occur one-by-one and
replicas, therefore, fail independently.
The lengths to which Byzantine Fault tolerant systems go to ensure independence of

faults is great. The largest contribution to ensuring failures are independent is diversifi-
cation. On the software side, diversification of the source code and the operating system
can be applied. On the hardware side, the platform, e.g. network card, CPU and other parts
and vendors, as well as the networking itself need to be diversified. The network must be
resilient to keep a faulty hardware component from disrupting the entire network.
Diversification can be achieved by using tools to generate di�erent versions from source

orwriting di�erent version from scratch, either by the same or even di�erent teams of pro-
grammers [��]. For third-party software, di�erent versions can be used to limit the chance
of a bug or weakness being present in multiple installations. Configuration of software
also needs to diversified. Most essentially passwords and other secrets to gain access to the
machines need to be diversified. Hardware can be diversified similarly. Where possible, a
vendor should only be used once on a single replica. This would both ensure that we do
not have to trust the vendors. The problem with this, besides the initial and higher main-
tenance cost of these highly diverse problems, is availability. Ideally, each replica has its
own administrator ensuring independence from the machines of other administrators.

��

In practice, distributed BFT systems are contacted by outside clients communicating
with the leader replica to send his request, the correct replicas of the distributed applica-
tion then communicate following the BFT protocol, and responses are usually sent from
each replica directly to the client. Leaving the client to handle the voting on the responses.
In this model the replicas are all networked to each other. To stay independent all ma-
chines should not be present in the same physical location.

�.�.�. Practical Byzantine Fault Tolerance

Practical Byzantine Fault Tolerance (PBFT) is a Byzantine fault-tolerant replication algo-
rithm [�]. It has been implemented multiple times [��] and analyzed for correctness [�].
Many BFT protocols begin by being variants or derivatives of the PBFT algorithm tomake
use of the past research [��, ��].
PBFT operates in phases: pre-prepare, prepare and commit to totally order requests. It

tolerates up to f Byzantine faults if there are n � 3 f + 1 total replicas.
The protocol includes checkpointing and view-changes for garbage collecting andmain-

taining liveness.

�.�. Robustness

While BFT protocols allow to make rigid guarantees they also require very precise fault
conditions. Under the assumption that the protocol does not contain any errors, but in-
stead only faults which are part of the tolerance model, we want to increase the likelihood
of a practical system to preserve the goals of integrity, confidentiality and liveness. In the-
ory, any faults that are able to happen independently are considered as occurring equally
likely. In practise, we want a better understanding of how likely it is for replicated services,
like BFT systems, to fail. We recognise that most protocol’s resilience is a best-e�ort, but
want to describe and follow a systematic method to increase robustness. Part of the con-
sideration is also the cascade of faults which are hard or impossible to model in a fault
model. Diversification already adds robustness to BFT protocols, by making bugs more
likely to be consigned to a single instance.
We show that compartmentalization creates stronger encapsulation of bugs and enables

us to extend the fault model to allowmore replicas and compartments to be faulty as long
as enough compartments of the same type are still functional.
Safety describes a protocol’s ability to maintain operational qualities, integrity and con-

fidentiality, even when a certain number of faults occur. However, protocols with the same
safety requirements, e.g. n � 3 f + 1 for BFT protocols, can show di�erent robustness to
faults. Robustness can be increased by verifying or hardening the entire protocol or parts
of the protocol against common faults.

�.�. I���� S������� G���� E��������� ��

�.�. Intel Software Guard Extensions
Intel SGX adds a set of additional operations to the x�� instruction set of Intel CPUs.
The additional operations allow the CPUs to run specially compiled units of code, called
enclaves, in a TEE [��, ��]. The main goal of SGX is to add a layer of defense, reducing
the attack surface of the system. Ideally, if it has no weaknesses and the enclave code has
no bugs, SGX removes the need to trust the infrastructure owner completely. The data
owner only has to trust the software provider [��]. Enclaves are protected from the rest of
the machine they run on to provide confidentiality and integrity. SGX is enabled by a set
of hardware features supported in the CPU itself.

Intel SGX features

Intel provides a feature-rich SDK for SGX with many higher-level features added on top
of the fundamentals supported by the hardware. The foundation for features used in this
thesis are software attestation, the secure memory regions and the separation from the
host system:

Software attestation: the user is able to verify that they are communicating with the
exact enclave they expect to be communicating with remotely. Hashing the enclave
and signing the result can be used both for attestation to users as well as proving to
the infrastructure provider that the enclave was not tampered with. The entire TCB
is covered by the hash.

Secure memory: the CPU has a reserved region of memory only enclaves can access
called the Processor Reserved Memory (PRM). Enclaves are loaded into the Enclave
Page Cache (EPC) inside of the PRM. The CPU copies the enclave data frommemory
outside of the EPC. After loading, the CPU itself assures exclusive access to the por-
tion of the EPC to a single enclave. This protection, however, limits the amount of
memory the enclave can access this way because the EPC is limited in size. The size
of the EPC has been increased over the versions of SGX. Practically, this problem
has been solved in newer Intel platforms [��].

Separation from the host: SGX enclaves run exclusively in Ring �, the least priv-
ileged execution mode [��]. This enforces separation from the operating system,
disallowing arbitrary SYSCALLS. Untrusted execution can only transition into the
enclave using the new instructions added to the x�� instruction set. Transitions
into the enclave are performed with ECalls and the enclave can call untrusted code
with registered OCalls. This presents a very limited attack surface. Because of the
secured memory region and address translation, even higher privileged processes
are not able to read the enclave’s memory.

O�cial Intel SGX libraries and Intel SGX SDKs are implemented, documented, freely
accessible and partially open-source. Moving code inside enclaves is easy in most cases,
however, interacting with the operating system or other devices requires additional work

��

[��]. One of the greatest limitations, not present in common environments is the limited
EPC size (���MB total, ��MB usable) [��]. Additionally, the high cost of transitions into
the enclave and out of the enclave need to be considered for high-performance applica-
tions. Special system calls are added to enter and exit the enclave with pre-defined entry
points and argument structure. The function interface is defined inside an EDL file which
is needed to compile the enclave code into a binary that SGX can load. The ECALL system
call is used to enter the enclave, and an OCALL can be made from the enclave to execute
code outside of it. The Intel SGX SDK toolchain generates wrappers around these system
calls using the EDL definitions to hide some of the complexity.

However, there are known attacks on SGX [��, ��, ��, �], such as physical side channel
attacks leaking information from the enclave, or software attacks on peripherals like Di-
rect Memory Access over PCI-Express. Furthermore, SGX makes use of Intel’s microcode
within the CPU to execute complex instructions, because microcode is inaccessible to
third parties and microcode updates are encrypted it is hard to analyse the actual mi-
crocode instructions on a CPU for bugs. Therefore, using SGX and completely believing
the guarantees given by Intel requires trusting Intel. However, throughmicrocode patches
some known attacks and issues were already fixed. For this thesis, we trust Intel services,
but assume the protocol implementation may include bugs and exploits.

�.�. T����� BFT Framework

T����� is a high-performance agreement framework [��] written in the Rust program-
ming language. It abstracts the client-to-replica and replica-to-replica communication
using an asynchronous message-channel model. It manages an asynchronous event loop
for the separate parts of a replica. The separate parts are kept modular. To accomplish
this T����� enforces strict interfaces on implementation of the protocol, the replicated
application and the client.

�.�.�. Agreement Protocol Interface

T����� makes it easy to interchange communication and encryption models, applica-
tions and consensus protocols [��]. The framework presents interfaces for each of the
components to implement, however, does not enforce any internal behaviour. In the de-
fault deployment, there are asynchronous workers for the following parts of the replica:

Communication: network messages from clients and replicas are received and ini-
tial cryptographic checks are done. This part can be used across many protocols and
applications without altering.

�.�. T����� BFT F�������� ��

Protocol: the consensus protocol is passed incoming messages from replicas and
requests from clients. This module then initiates the broadcast of further messages
to other replicas or to the application module. The application module can also
cause events which notify the protocol module. A full implementation for PBFT
already exists.

Application: this module receives requests after being ordered by the protocol mod-
ule. Responses are sent to the protocol module. The application interface includes
functions for checkpointing.

T�����’ framework components aremodular and opt-in. Registeredmodules in a replica
using T����� are called with the event context from an event loop in T�����. By moving
more code into the protocol module the communication and application module can be
omitted or only partially used.

Figure �.�.: T�����’ high-level structure with asynchronous modules. [��]

The communication between the modules as well as the network communication are
handled by T����� internally, as shown in figure �.�. The advantage of this implemen-
tation is that values rarely need to be copied, instead, just the ownership of messages is
moved. To allow the modules to make progress they are continuously polled.

�.�.�. Rust Programming Language
Rust is a systems programming language. Its goal is to enable programmers to write code
for all domains with arbitrary requirements [��]. Rust is systems-level to allow program-
mers to take control of all low-level details necessary for the specific problem they are
trying to solve, while allowing for useful abstractions and short-hand. The language de-
sign invites the programmer to use goodmemory management, sensible data representa-
tion and concurrency without leading to problems commonly present in other low-level
languages like segmentation faults or data races. This makes Rust a powerful tool for
writing code where low-level access is required but crashes, corruption or exploits need
to be avoided. Reducing the likelihood of these kinds of errors and attacks makes Rust
especially useful for writing BFT applications. The absence of a garbage collector also
makes Rust a good match for networked applications, as fewer latency spikes should be
noticeable.

��

Because Rust easily interfaces with the C Application Binary Interface (C-ABI) it is pos-
sible to write native Intel SGX enclaves. Enclaves are limited in size, having a small binary
footprint as well as lowmemory usage is valuable. While Rust binaries can get quite large,
the absence of a garbage collector and small runtime environment makes the language
useful for writing trusted code. Rust performs exceptionally well under memory con-
strained conditions [��]. Rust also makes a commitment to reliability [��], and attempts
tomove asmany exceptions to occur at compile-time or force error handling on the devel-
oper [��, ��]. Rust’s programming paradigms make it practically impossible to encounter
segmentation faults. The powerful type system allows for highly structured, easily read-
able, and less fallible code. Because applying a consensus protocol to any application
necessarily adds a lot of overhead it is important to save performance whenever possible.
Rust also advertises “Fearless Concurrency” [��], which in the context of a distributed sys-
tem allows us to write a program which communicates with compartmentalized code and
the network at large without encountering data races. This is one of the reasons T�����
was written in Rust.
The ecosystem also adds incentives to write and package code in a way which makes

code easy to reuse and test. Encouraging test-driven development, modularization and
compile-time specialization makes old or foreign code easier to work with and improves
trust into large code bases’ correctness.

�. Design
This thesis’ main focus is designing and implementing a compartmentalized BFT proto-
col based on the PBFT [�] protocol. We follow the S����BFT approach to separate PBFT
into multiple independent compartments. Our protocol is designed to reach consensus
even if a number of compartments aremalfunctioning. Weuse compartmentalization into
TEEs to improve confidentiality and integrity. Using BFT and TEEs we define a stronger
fault model than hybrid protocols. Our fault model needs to be detailed, as faults oc-
curring inside and outside of certain TEEs can have di�erent consequences. We present
the design of the S����BFT protocol and our method to gain robustness, confidential-
ity and safety using compartmentalization. Our goal is to tolerate as many simultaneous
replica faults as possible. To do so we determine the scope and responsibilities of each
compartment. Finally, the high-level structure of S����BFT’s design within the T�����
framework is discussed.

�.�. System Model

We construct a distributed system of nodes. The nodes are connected by an asynchronous
network which is allowed to delay messages, duplicate messages or deliver them out of
order. Messages may be arbitrarily long delayed, but always arrive after a finite time. Each
node is separated from the others and can fail independently. There are two flavours of
nodes: clients and replicas. Replicas are further logically subdivided into one leader and
multiple backups by the protocol.

We assume unforgeable digital signatures. Each participant is able to sign and verify
messages if they have access to the necessary keys. Signing messages requires the author
to have access to the private key. Verifying a signature requires the public key.

Replicas are required to support a form of trusted execution. The TEEmust support se-
cured memory regions to keep private keys and decrypted confidential data secret. With-
out memory access protections, an attacker on the untrusted side could read the private
key or state and leak this data without taking over the TEE. This would allow the attacker
to impersonate the compartment. Because we assume memory access protection in the
TEEs the compartments may contain private information, such as asymmetric key pairs
for authentication. The system running on each replica is separated from the operating
system by the TEEs. The compartments in the TEEs are separated from each other, a
faulty compartment cannot access another local TEE’s memory. Each compartment on a
replica performs a small part of the agreement process.

��

A replica can fail in the untrusted execution environment, which includes the untrusted
part of our own system aswell as any supporting software running on themachine, like the
operating system or necessary drivers. With all safety-critical code and confidential data
protected inside TEEs, a Byzantine untrusted side on a replica can only make the replica
unavailable. The untrusted side may issue calls into the TEE, but the compartment or
protocol code is able to detect incorrect calls using digital signatures. The untrusted side
may also issue calls as a replay, which the compartment will detect as a repetition and
ignore. A Byzantine untrusted side is also able to choose to operate correctly.
To di�erentiate S����BFT from hybrid protocols we tolerate faults in TEEs. The TEE

compartments are able to fail Byzantine as well. We assume faults in TEEs originate from
bugs or exploits in developer code, not from the implementation of the TEEs platform
itself. We also assume that once a TEE is taken over, it does not allow the attacker to
take control of other local TEEs. Failures in TEEs are independent of each other: TEEs
with similar tasks on di�erent machines and di�erent TEEs on the same machine fail
independently. This can be achieved through diversification [��]. A malicious TEE is able
to spread the fault to the untrusted side of the replica it is running on.
A failure in a client allows it to behave arbitrarily. The faulty client can then send arbi-

trary requests, but as the clients are individually authenticated, a faulty client alone cannot
impersonate another member. The e�ect of a faulty client’s requests on the application’s
state is not considered, as the application’s implementation and access control is separate
from the S����BFT protocol. This was the focus of previous related works and could be
combined with our approach [��].
The general S����BFT approach demands that quorumdecisions are protected by com-

partmentalisation. The protocol requires a quorum of 2 f + 1 messages out of the n com-
partments of a type to proceed. Security-sensitive code must be moved into compart-
ments. Compartments must be independent on the local replica and not share a common
state with other compartments. Therefore, there can not be a store or state compartments,
which other local compartments need to rely on. For the PBFT derived implementation
of S����BFT we use three di�erent types of compartments per replica. PBFT’s phases
provide an intuitive boundary to split the protocol into compartments. The phases are
independent, data flows using quorums of the preceding compartment type. The com-
partments are Preparation, Confirmation and Execution. Each compartment is present ex-
actly once on each replica.

�.�. S����BFT Protocol
S����BFT is a BFT SMR protocol based on PBFT [�]. We copy the general flow of the
PBFT algorithm in normal-case operation. S����BFT divides the safety responsibilities
across the three compartments. Each compartment is responsible for one of the phases
of PBFT: pre-prepare, prepare and commit. A compartment does not trust another com-
partment, just because it is local. This follows directly from our system model, as only

�.�. S����BFT P������� ��

some compartments might be malicious. Therefore, any action in a compartment must
be caused by either a quorum or a liveness decision combined with the log of verifiable
past messages. Compartments are allowed to trust liveness data from the untrusted side
of the replica for two reasons. First, the compartment is unable to generate liveness data,
like a timer or interrupt because those require cooperation with the untrusted side, and
second, a malicious untrusted side is already capable of attacking liveness by dropping
messages. The untrusted side of the system may be unaware of the BFT protocol’s local
state, messages are forwarded to compartments by type. In regards to the BFT protocol,
the untrusted side can be stateless.

�.�.�. Normal-Case Operation

We split PBFT along its phases and quorum decisions as shown in figure �.�. Applying
the S����BFT method to the PBFT protocol we identify three possible individual com-
partments: Preparation, Confirmation and Execution. This leads to this abstract flow for a
request to pass through the S����BFT system:

�. Clients send requests to what they assume to be the leader replica. Clients start
timers after sending a request and broadcast their message on timeout. The un-
trusted side of the replica accepts the message over the network and forwards the
request to the local compartments.

�. The leader checks requests in the preparation compartment and then broadcasts
both the request and a pre-prepare message for the request to the backup replicas.
This requires that the message is signed by an authenticated client. The leader ad-
vances the clients last timestamp.

�. Backup replicas forward the incoming requests and pre-prepares message to their
preparation compartment, verify its authenticity and broadcast a prepare message
for the pre-prepare.

�. Prepare messages are routed into the confirmation compartment. Once a set of
2 f + 1 prepares from any set of prepare compartments are present in the confir-
mation compartment they broadcast a commit message. Unlike the PBFT protocol,
the conformation compartments are unaware of the state of the local preparation
compartment. This means we require 2 f + 1 instead of 2 f messages, which may
include the local prepare compartment.

�. Commit messages get sent to the execution compartments. When 2 f + 1 di�erent
commitmessages are present in the execution compartment the request is executed
and the reply is sent directly to the client. As the commit only refers to the request
by digest, the request’s data was transmitted to the execution compartment in the
first step.

��

The state of a single replica is no longer represented by a single phase out of
hpre-prepare, prepare, commiti, as the compartments we split our protocol into have
their own independent state. The independence of the compartments requires us to treat
local and remote compartments equally. This means, unlike PBFT, we need 2 f + 1 mes-
sages for a strong quorum because we cannot access the state of the local preceding phase.

�.�.�. Compartments

After applying a split of the PBFT protocol into Preparation, Confirmation and Execution
compartments we need to examine the function of each compartment to ensure inde-
pendence. We transform PBFT’s phases into quorum decisions of compartments of the
same type. The untrusted side can only forward, store and distribute the di�erent kinds
of messages that are part of the protocol. On the untrusted side message may also be
filtered. Any operation which only a�ects liveness may be given to the untrusted side to
reduce the need to call into TEEs. The other components on the replica that aren’t part
of the TEEs such as operating system, drivers and other support software are also part of
the untrusted side. The compartments are intentionally kept small and reduced to their
core purpose, to keep the TCB as small as possible. A small TCB reduces the likelihood
of a bug and exploit in the TEE. Each correct compartment signs its messages using a
private key only accessible inside the compartment. This allows other compartments to
uniquely identify amessage’s author as one of the other compartments. Because of the key
distribution method (see �.�.�), this allows each compartment to identify both the replica
and compartment type a message was sent from. The untrusted side presents itself as a
message broker (see �.�) to the compartments. It acts as a layer which forwards messages
to the compartments based on the message type according to the routing rules shown in
table �.�. If a message is either signed and sent by or delivered to a participant which is
incorrect according to that table, the message is discarded.

Protocol Message Type Correct Sender Correct Recipient
Request Client Preparation C.

Ordering
Pre-Prepare Leader’s Preparation C. Preparation C.
Prepare Preparation C. Confirmation C.
Commit Confirmation C. Execution C.
Reply Execution C. Client

Garbage Collection Checkpoint Execution C. All C.

View Changes
View-Change Confirmation C. Preparation C.
New-View Preparation C. Preparation C.

Table �.�.: Correct routing for S����BFT message types. “C.” abbreviates “compartment”. This
table is analogous to information shown in figure �.�.

�.�. S����BFT P������� ��

A requestmessage should ideally always be sent to the leader replica directly. The client,
however, might not be aware of recent view-changes and not know who the leader is. If
a client sends requests to the wrong replica, either the preparation compartment on that
replica will re-transmit the request to the leader or the client will timeout and broadcast
the message itself. Also notable is that PBFT’s concept of a leader is only present for the
preparation compartment. After a request is proposed by the preparation compartment
on the leader with a pre-prepare message and a quorum of prepare messages from the
backup preparation compartments is present, the rest of the protocol continues without
the need for a leader.

�.�.�. View Changes

We keep the view-change protocol used in PBFT to provide liveness even when the leader
becomes faulty [�]. The view-change protocol only needs to be slightly adapted to work in
a compartmentalized context. As shown in table �.� the view-change message is sent by
the confirmation compartment when it is notified of a timeout. The timeout originates
from the untrusted side. Because view-changes are a liveness protection, the untrusted
side’s timer can be used inside the TEEs without losing safety. The view-changes are sent
to the preparation compartment of the proposed new leader. Once a preparation com-
partment has a quorum of view-change messages it broadcasts new-view messages con-
taining this proof to all preparation compartments on all replicas. Each compartment
receiving a new-view can verify this proof by checking the signatures and advance their
view accordingly. Afterwards the preparation compartments continue operating in the
new view. Later stages and compartments can deduce the successful view change from
the quorum of messages from the preparation compartments in the next view. This op-
timization shows how the leader replica is only performing a special task concerning the
preparation compartments.

�.�.�. Garbage Collection

To allow compartments to free memory occupied by old messages we use checkpoints
for garbage collection. After a configurable number of requests have been executed the
execution compartment serializes its state and sends a checkpoint message to all com-
partments on all replicas. The serialized state has to be encrypted such that only other
execution compartments can deserialize it to keep confidentiality. Because garbage col-
lection is necessary in compartments, checkout messages have to be sent to all compart-
ment types. Once any compartment has a quorum of valid checkpoint messages for the
same sequence number and state by di�erent execution compartments it can delete all
older messages out of its log. Execution compartments can also use the verified check-
point to update their state if they are behind. The preparation compartments also use the
checkpoint messages to advance their water marks.

��

�.�.�. Encryption and Signatures
Compared to PBFT our S����BFT protocol introduces more logical protocol participants
which need to be identifiable and able to sign messages. The encryption and signature
scheme is designed alongside the following goals and requirements:

�. We have a finite set of authenticated clients known from the start.

�. Any enclave which receives a request must be able to verify its authenticity.

�. Only enclaves which need to decrypt client requests are able to do so.

�. As long as no execution enclave is faulty confidentiality is preserved.

�. A client is able to identify replies from di�erent execution enclaves.

To achieve these goals a combination of symmetric and asymmetric encryption is applied.
The encryption and signing scheme cannot be directly taken from PBFT, as the compart-
ments need to be able to digitally sign their own messages. Protecting confidentiality
requires that only execution enclaves are able to decrypt certain messages.

Asymmetric Key Distribution

In our system model we assume to be able to identify the sender of a message crypto-
graphically. This can, for example, be achieved using digital signatures that are based on
public key cryptography or MACs. MACs have the advantage of being a lot faster to verify,
however, are not able to be used to prove a messages authenticity to a third party. For
MACs, each pair of communication partners need to obtain a unique MAC. As we have
not only the 3 f + 1 physical machines but also on each machine at least 3 enclaves, which
need to be able to sign messages for each other, the number of MACs required to store
and maintain would skyrocket. For the sake of maintainability, simplicity and robustness
we provide each logical participant in our network with a public-private key pair to use
for digital signatures. However, this leaves the opportunity to selectively replace some
signatures with MACs in frequent communication channels in future work [�]. We au-
thenticate each client i by a public and private key (cip , cis). Furthermore, each enclave on
every replica has its own unique public-private key pair: (er,jp , er,js), where r is the replica
id and j the enclave type. This is necessary to prevent another enclave, the untrusted side
or even a third party to impersonate the enclave. The enclave type j will be noted as P
for preparation, C for confirmation or E for execution. Asymmetric keys are annotated
with subscript p for the public key and s for the secret, or private, key. Finally, the ex-
ecution, or application, enclaves contain a pre-shared key K. This is necessary because
the execution enclave will have to decrypt the request of the client. Only execution en-
claves are meant to be able to decrypt the request for the sake of keeping confidentiality
as long as no execution enclave is faulty. An alternative would have been to have clients
send their requests encrypted for each execution enclaves unique key-pair. This, however,
would have required more changes in our algorithm because digests over the encrypted

�.�. S����BFT P������� ��

data for di�erent replicas would be di�erent. Therefore, the client would have to send the
request to each replica itself, instead of the leader broadcasting the single message. This
is possible, but adds an overhead to ensure each replica received the same request.
In a configuration with k replicas and l clients the following keys exist and are known

to each participant.

Client i for i 2 {1, ..., l}:
(cip , cis) used for signing requests.

K used for symmetrically encrypting requests and decrypting responses.

er,Ep for r 2 {1, ..., k} used for verifying responses from the execution compart-
ments.

Replica r for r 2 {1, ..., k}:
Untrusted:

⇤ cip for i 2 {1, ..., l} used for verifying client requests. The untrusted side
uses the authenticated client’s public key to act as a firewall to reduce load
on the compartments.

Preparation enclave:

⇤ (er,Pp , er,Ps) used for signing pre-prepares and prepares.

⇤ cip for i 2 {1, ..., l} used for verifying client requests.
⇤ er,Pp for r 2 {1, ..., k} used for verifying pre-prepares from the leader’s
preparation compartments.

⇤ er,Cp for r 2 {1, ..., k} used for verifying view-changes from confirmation
compartments.

⇤ er,Ep for r 2 {1, ..., k} used for verifying checkpoints from execution com-
partments.

Confirmation enclave:

⇤ (er,Cp , er,Cs) used for signing commits.

⇤ er,Pp for r 2 {1, ..., k} used for verifying prepares from preparation com-
partments.

⇤ er,Ep for r 2 {1, ..., k} used for verifying checkpoints from execution com-
partments.

Execution enclave:

⇤ (er,Ep , er,Es) used for signing responses.

⇤ er,Cp for r 2 {1, ..., k} used for verifying commits from confirmation com-
partments.

⇤ er,Ep for r 2 {1, ..., k} used for verifying checkpoints from other execution
compartments.

��

⇤ K used for symmetrically decrypting requests and encrypting responses.

⇤ cip for i 2 {1, ..., l} used for verifying client requests.

The color encodes the publicity of the keys:

�. Green: “Well-known” at the beginning of runtime. These are the public keys clp

for l 2 {1, ..., i} for clients and eh,jp for h 2 {1, ..., k} and j 2 {P, C, E} for the
compartments.

�. Blue: Shared between a subset of trusted execution environments. Private until
a member of that set becomes faulty. Used to preserve confidentiality as long as
possible. This includes the shared private key K used to symmetrically encrypt the
requested operation.

�. Red: Known only to the owner of the key unless faulty. These are the private keys
cls for l 2 {1, ..., i} for clients and eh,js for h 2 {1, ..., k} and j 2 {P, C, E} for the
compartments.

With this asymmetric and symmetric key distribution replicas can verify all necessary
types of communication to perform PBFT split across multiple independent TEEs.

Client-Replica Communication

Client i can send a request with operation b encryptedwith the preshared keyK and signed
with cis to the leader. As confidentiality is a requirement in our fault model, we encrypt
client requests bK = Enc(b, K) and include it in the packet. We sign the encrypted data
using the client’s private key and bs = Sign(hbK, mi , cis), where m is any necessary meta
data sent alongside the request of the operation b. We sign the encrypted request data
bK instead of b itself to ensure all compartments can verify the signature. The meta data
m contains additional metadata like the timestamp and client id. It is necessary to have
this data accessible even to enclaves that cannot decrypt the entire message because it is
needed for the ordering and agreement process. A correct leader distributes the request
as well as a pre-prepare for the request, which puts the requests into a view and gives it a
sequence number for ordering. Before broadcasting the leader can check on the untrusted
side whether the message originates from an authenticated client. This does not hurt
our safety assumptions, as only liveness can be disrupted by the untrusted side dropping
the request. Because the operation itself is encrypted with K, which is only present in
clients and execution compartments, no compartment or replica other than the execution
compartment can decrypt the operation. A variation of S����BFT could useMACs for this
purpose, or use client-specific Ki keys for encryption to protect clients from each other.
Because replies from the replicas are not needed as proof, they can also be sent using
MACs for a gain in performance.

�.�. S����BFT P������� ��

Request Verification

Any enclave as well as the untrusted broker can check that the signature bs is correct. This
proves integrity of the message from the client. Because we assume strong cryptography
it also means that the message truly originated from the client as long as the client is
not faulty. Therefore, the request came from an authenticated client and can be processed
further. If a client is faulty its secret keys could have been leakedwhich allows other parties
to send requests as the client. If anymisbehaviour is detectedwithin themessage the client
can be blocked. In the described version of the protocol, this blocking would occur as part
of the application in the execution environment, which is able to implement its very own
access control on top of S����BFT’s authentication scheme [�]. However, the execution
enclave could also be used similarly to the untrusted side in checking whether a request
should be processed further, similar to a firewall [��]. It needs to be the execution enclave,
as it is the only compartment on a given machine which is able to decrypt the request and
possibly check the application’s ACL [��]. We use the untrusted side to act as a firewall
by checking the validity of the signatures. This at most disrupts liveness, if the untrusted
side is faulty and discards correct messages. In our fault model, a faulty execution enclave
is also able to disrupt liveness, but by having it check the semantics of incoming requests a
better firewall could be built. The execution enclave could then even cache the decrypted
message data or preprocess request data depending on the application.

Ordering

When following the normal-case operation (�.�.�) messages are required to be signed by
the correct TEEs or clients. This allows TEEs later in the pipeline to check for a quorum
of correctly signed messages in the stage before them.

Leader replica’s with non-faulty preparation enclaves will verify the request’s au-
thenticity, then broadcast signed pre-prepare messages to the backups’ preparation
and all execution enclaves. The execution enclave stores the request for later.

Once a valid pre-prepare message is received, each preparation enclave broadcasts
a signed prepare message to the confirmation enclaves.

When the confirmation enclaves have a quorum of prepare messages they broadcast
a signed commit message to the execution enclaves.

After a commit quorum is reached in the execution enclave, it interprets the request
after checking its signature itself. It can decrypt the request using the pre-shared
key. The requested operation is performed inside the execution compartment. At
this point, the decrypted data could also turn out to be nonsense, which the exe-
cution enclave could see as a reason to block the client. If the message cannot be
decrypted, nothing is executed.

��

Any reply to the client is signed using er,Es instead of using K to ensure the client
can determine that a su�ciently large set of di�erent execution environments have
responded. The data is encrypted usingK, whichmeans that the digest over that data
is identical for the responses of all execution environments and, therefore, easier to
count for the client.

Each of the agreement messages contain at least the sequence number, the hash of the
message bs as well as necessary identification of the sender and recipient for signature
checking. Requests, garbage-collection and view-change messages can be verified as well.
Requests are verified by the signature of the client, this can be done in any TEE.

�.�.�. Fault analysis

Normal BFT protocols without TEEs are able to tolerate f faults provided they have n �
3 f + 1 members. If the fault model only allowed crash faults in TEEs, this means a TEE
only fails by crashing, the BFT protocol could withstand f faults with only n � 2 f + 1
members. This is because the TEEs prevent equivocation in these BFT systems, making
them equivalent to crash-fault tolerant protocols. This changed fault model is commonly
used for hybrid models.
Our fault analysis needs to bemore detailed than other BFT protocols, because faults in

di�erent compartments and on the untrusted side have di�erent consequences. We keep
f to count the number of replicas with any kind of fault. The TEEs can fail independently
as: fp, fc and fe count the number of faulty compartments for preparation, confirmation
and execution compartment types respectively. A fault outside of a TEE is noted as fu, for
a faulty untrusted side. A faulty compartment implies a faulty replica, but a faulty replica
does not imply faulty local compartments: fu � fi � 0 for i 2 {p, c, e}. A replica may also
havemultiple faulty compartments. Practically, this represent that the adversary can break
out of the compartment, or needed to compromise the untrusted side first to get access
to the compartment. However, just compromising the untrusted side alone does not give
control or access to data inside of the compartments. This means: max{ fp, fc, fe}
f = fu. We maintain liveness as long as n � 3 fu + 1 and n � 3 fi + 1 for i 2 {p, c, e}.
Confidentiality is kept as long as fe = 0. Integrity is given as long as n � 3 fi + 1 for
i 2 {p, c, e}. One result is that an arbitrary amount of faults outside of the TEEs can be
tolerated to maintain safety. In practise, this means each compartment type needs to be
able to have amajority of correct members to form a strong quorum. This represents each
stage, or phase of PBFT, to be able to form a correct quorum for the next stage to use.

Example

Figure �.� shows a possible deployment of S����BFT containing faulty nodes. In replicas
�, � and � we find faults in the preparation, confirmation and execution compartments
respectively. The faults are counted in table �.�.

�.�. S����BFT P������� ��

Figure �.�.: Partitioning BFT Protocol into multiple compartments.

f fu fp fc fe

� � � � �

Table �.�.: Number and type of faults for figure �.�

In this example liveness can not be guaranteed because 4 = n ⇤ 3 · fu + 1 = 3 ·
3 + 1 = 10. The faulty compartments on replica zero, one and two can delay the entire
replica arbitrarily. If the adversary, however, only stops the faulty compartment liveness is
maintained as there is only one fault per compartment type. With fi = 1 for i 2 {p, c, e},
if only the compartment itself was shut down 4 = n � 3 · fi + 1 = 3 · 1 + 1 = 4 is
true and liveness of the system is maintained. Confidentiality is not kept because of the
single fault in the execution compartment (fe 6= 0) in replica two. This faulty execution
compartment may leak the internal state or decrypted requests. If only preparation or
confirmation compartments were a�ected, confidentiality of requests and the application
state would bemaintained. Integrity ismaintained as each enclave type is still able to form
a strong quorum of correct members: 4 = n � 3 · fi + 1 = 3 · 1 + 1 = 4 for i 2 {p, c, e}.
This shows how separation increases safety, as in classical PBFT having three out of four
replicas faulty breaks the integrity of the protocol. Robustness is increased because we
assume that finding a way to cause a fault in a compartment is harder than it is to cause a
fault on the untrusted side.

��

�.�. Compartment Broker
The compartment broker, or SGX broker, is the mainmodule that is added to the T�����
framework to enable the use of SGX enclaves. Because the T����� framework is modu-
lar and asynchronous this broker layer needs to implement the necessary interfaces and
adapt them to the TEE’s interface. The general structure of a replica using the T�����
framework is shown in figure �.�. Di�erent than the example structure shown in figure
�.� the application code resides inside the execution enclave which ismanaged by the bro-
ker as part of the protocol module. Replacing only the protocol module with the broker
layer reduces the amount of changes necessary to call into the compartments. Following
the example design more closely, i.e. presenting an application interface which also in-
teracts with the compartments used by the protocol would duplicate interfaces and make
the software system more complex.
The broker layer interprets incoming messages from the network and routes them to

the corresponding compartments based on type. The broker is designed for SGX en-
claves as TEEs. This means its design is based on the specific interface for SGX enclaves,
which are ECalls and OCalls. Enclaves can enqueue messages to be sent, either over the
network or to other local enclaves. Sending messages locally is required, for example,
to send prepare messages from the preparation compartment to the confirmation com-
partment. These messages are automatically routed to both the local compartment and
the remote ones by the broker layer with only one OCall from the sending compartment.
Other actions to be performed by the untrusted side can be enqueued using OCalls as
well. Whenever executed by T�����, the broker consumes the queues and acts on the
messages inside.
This queue design limits the number of ECalls and OCalls performed. Both the broker

and the enclaves can collect messages and actions in a list, before posting the entire list as
one collection of ECalls or OCalls. Furthermore, this queue bu�er enablesmore flexibility
to execute enclave-handlers asynchronously in their own thread or place a thread in the
enclave using SGX switchless calls [��]. Moving the data from the OCalls into the queue
requires a copy. This, however, is unavoidable, as the data for the OCalls needs to be
created within the enclaves, and any out-bu�er in the OCall is copied by the SDK.
Because the broker layer is implemented completely outside of the TEEs, our design

makes sure to not give it safety-critical functions. An adversarial broker can attack liveness,
by refusing to deliver messages or perform OCalls.

�.�.�. Compartment Interfaces

Because there are a large number of di�erent kinds of messages that need to enter and
exit the enclave, we chose to have a simple interface that accepts the serialized messages
instead.
Therefore, the broker and enclaves communicate using exactly one ECall and oneOCall,

defined in the EDL file. The Ecall is used to enter the compartment and the OCall to exit.

�.�. C���������� B����� ��

enclave {

from "sgx_tstd.edl" import *;

from "sgx_stdio.edl" import *;

from "sgx_backtrace.edl" import *;

from "sgx_tstdc.edl" import *;

trusted {

public sgx_status_t handle_ecall_compartment(

[in, size=len] const uint8_t* ecall_mp, size_t len);

};

untrusted {

sgx_status_t handle_ocall_compartment(

[in, size=len] const uint8_t* ocall_mp, size_t len);

};

};

Additional ECalls and OCalls will be present from the SGX SDK, but those will not
be used during protocol execution. The ECall and OCall introduced by S����BFT for
each enclave receive serialized data. However, the serialized data is to be interpreted as a
selector over the available functions in both environments. As such, the ECalls can contain
data for the following purposes:

Initialization

Like the PBFT implementation in T����� some runtime configuration is loaded
from a configuration file [��]. To keep the S����BFT implementation flexible, it al-
lows the enclaves to request configuration data from disk. This data could be signed
by a key present in the enclaves at boot to verify a trusted administrator signed the
configuration file. The initialization ECall contains information from the configu-
ration file as well as the command line arguments the replica was launched with.

Identity updates

After receiving information about the system in the initialization, identity ECalls
provide public keys for the networked peers. These keys can also be signed by an
administrator key burned into the enclaves.

One or more received protocol message

Network messages arrive in the broker layer, and after parsing need to be routed to
the enclaves. The serialized network message is passed to the enclave through this
ECall.

Timers

The untrusted side sets timeouts and timers for di�erent purposes. It can decide to
inform an enclave about timer expirations for liveness decisions.

��

We allow timers and interrupts to be controlled by the untrusted side. They are reported
to the compartments without proof. This is because this information can at most attack
liveness, but a malicious untrusted side of a replica can already drop all messages.
TheOCalls on the other hand allow the enclave to request actions from the broker layer:

Requesting identity information

After configuration data has been loaded into the enclaves, they are aware of the
network of peers, however, keys of the peers are not hardcoded into the enclaves.
This means, each enclave needs to request public keys from disk.

Send one or more signed protocol message to a list of protocol members

To send messages over the network the enclave has to serialize the messages and
then pass them to the untrusted side to interact with the network. For verification
at the receiver, all serialized messages need to be signed before they are given to the
untrusted side to route.

Due to the overhead ECalls and OCalls add to every call, the implementation will aim to
issue as few calls as possible. Batching of ECall and OCall data into a single ECall or OCall
to reduce the number of individual calls is performed whenever possible. The untrusted
side may choose to batch ECalls by waiting.

�.�.�. Asynchronous Operation

Switchless SGX is a method of using SGX while avoiding the high cost in CPU cycles of
switching into, and out of, the enclaves during an ECall. The naïve solution is very simple:
one thread spins inside the enclave reading a part of memory shared with the untrusted
side, and the untrusted side writes to that memory, instead of issuing an ECall. OCalls
can be implemented analogously.
The downside of this approach, in general, is that there is a chance of wasting CPU

cycles by having these threads spin in the enclaves with no work to do. This is necessary,
as there is no way of blocking and waking up a thread inside the enclave. However, for
applications that expect to have very frequent need for ECalls and OCalls switchless calls
can save the cost of the ECall and OCall almost entirely.
The Intel SGX SDK supports switchless SGX calls with the additional feature of a reac-

tive worker model. By using worker threads it reduces the amount of wasted CPU cycles
spinning in the enclave by meeting a user-set e�ciency limit [��]. This assumes that sim-
ilar ECalls will take a similar duration each call. This could be a potential problem for
our implementation, as time spent executing the same ECall will spike once a quorum is
reached, and otherwise the enclave will almost always immediately return. An optimiza-
tion, which also fixes this problem, would be collecting enough messages for a quorum
outside of the enclave and only switching into the enclave once with all necessary data.

�.�. C���������� B����� ��

Figure �.�.: Decision matrix of using SGX switchless calls or ECalls and OCalls to call into the
enclave, and whether to have threaded handlers for each enclave or call them directly
from the layer above.

��

Using the Intel SGX SDK, an ECall can be marked as switchless in the EDL file defining
the enclaves interface. This is taken as a hint by the SDK, and calls will not necessarily
be executed switchless. This means that it is possible to selectively mark our ECalls as
switchless, and iteratively find the optimal settings for performance on our machines by
benchmarking. We will present the synchronous classical broker interface. The extend
to which full switchless SGX and threaded asynchronous enclave handlers are mixed pre-
scribe a di�erent execution model, as shown in figure �.�. The left column in figure �.�
shows the calls into and out of the enclave to be switchless, this is no requirement and
even mixing is possible, though produces harder to maintain code. The top row of fig-
ure �.� applies a threaded enclave handler, which communicates with the broker using
message channels. Instead of busy-waiting inside of the enclave, a thread which spends
the time waiting in the untrusted side manages communication with the enclave beneath
it and the rest of the system above it asynchronously. By mixing these two variations of
asynchronous execution the four broker designs follow:

�.� (�) Every enclave has a busy-waiting thread for switchless ECalls and a handler on the
unsafe side in another thread is polling for switchless OCalls. Each handler thread
is talking to the managing broker through bi-directional channels. This setup al-
lows for using more available threads and theoretically minimizes latency out of all
the configurations. It also allows enclave code to block or be very costly while still
allowing other enclaves, enclave handlers and the broker itself to continue compu-
tation. However, many busy-waiting threads are wasting cycles and context switches
are costly.

�.� (�) Every enclave gets a thread of execution but does not poll inside of the enclave and
does not use SGX switchless calls, but instead uses ECalls and OCalls to enter and
exit the TEE respectively. This still allows multiple threads to be in the trusted
environment at the same time and the broker to accept and handle IO while com-
putation inside of the enclaves happens. This also reduces the number of threads,
but at least two more ECalls and OCalls are needed than in case (�) for each context
transition.

�.� (�) This is the most asynchronous configuration. The broker initiates work in the
threads waiting in the enclaves by a switchless SGX call. The enclaves then re-
spond by performing a switchless OCall which requires the broker to poll the en-
claves switchless OCalls in between performing IO and calling into the enclaves.
This could be simplified in the implementation by using the Future type and asyn-
chronous primitives. This optionminimizes the amount of threads while still allow-
ing entirely parallel computation inside of the enclaves and outside of the enclaves.

�.� (�) In configuration (�) the broker thread directly calls into and out of the enclaves using
ECalls and OCalls respectively. Having only one thread minimizes the amount of
threading-based context switches, but as no switchless SGX calls are used, the thread
has to transition into the TEE every time an enclave needs to be involved.

�.�. A���������� C����������� ��

One possible application for mixing is in version (�), with a synchronous broker thread
switchless-calling into the enclaves. The broker could broadcast every message to every
enclave with low-cost switchless SGX calls, and enclaves could initiate sending of a mes-
sage of their own with standard OCalls. This way the broker avoids busy-waiting on mul-
tiple possible calls as well as waiting for incoming messages, but the context switches are
still minimized as enclaves will not respond on most messages, only appending them to
their log.
The initial implementation uses version (�), as it is the most straight forward to im-

plement and will serve as a baseline for further optimizations and experiments with the
other design alternatives in the future. Using multi-producer-single-consumer channels
to handle communication from the enclaves to the untrusted broker, while not strictly
necessary, as the design is single-threaded, allows for easier adaptation for the other de-
signs.

�.�. Application Compartments

It is common for the execution part of the protocol implementation to be closely inte-
grated with the application or service that is replicated. We recognize a possible variant
of S����BFT for PBFT which adds robustness under a slightly changed fault model. In
this variation we separate the execution compartments protocol code from its applica-
tion specific code by placing application code in its own compartment. Further compart-
mentalization in our fault model do not add any additional safety or robustness, as the
application instance has to trust its BFT protocol member shown in figure �.�.

Figure �.�.: Variant of S����BFT with split of the execution enclave into BFT-protocol execution
and application execution environments.

��

�.� (�) Here code that is application specific resides inside of the execution enclaves, which
shares protocol code. This makes assumptions about the execution compartment’s
TCB size harder as it is application dependent. A faulty execution compartment has
full access to application data.

�.� (�) The application code is contained in its own compartment. A faulty execution envi-
ronment cannot directly access application state due to memory access protections
between TEEs. However, no additional integrity or safety is gained, as a faulty ex-
ecution enclave can make the application enclave do anything without requiring
another quorum. Another upside of this split is that the protocol enclaves can be
diversified, but an end-user deploying a system with their own application might
choose to provide fewer application compartment implementations to save cost.
This architecture could also be used for running the application on remote ma-
chines.

A faulty execution compartment will also induce an e�ective fault in the application
environment, as it can introduce arbitrary delays. In the same way, a faulty application
compartment will behave identically by being able to introduce arbitrary delays.
The existence and use of the symmetric K key is another argument for applying the

possible execution and application split. In that case the application compartment would
trust messages signed by the local execution enclaves key pair. The application then uses
the symmetric key K instead of the execution enclave, and another set of key pairs is in-
troduced the identify the application enclaves. Using the execution compartment’s keys
only makes message encryption more di�cult, as hashes cannot be compared directly,
but doesn’t improve confidentiality as a single faulty application enclave can still decrypt
and leak data. Removing the K symmetric key from the execution compartment means
compromised execution compartments do not a�ect confidentiality at all. Assuming the
protocol implementation in the execution compartment’s TCB is larger than the applica-
tion code, this could increase resilience.
A separation into an execution and application enclave would enable a design closer

to the example T����� structure from figure �.�. However, the additional message ex-
changes and ECalls would impact performance negatively.
Other approaches aim to increase robustness by separating machines physically [��],

based on their semantically separate tasks [��].

�. Implementation
Following the aforementioned designwe implement a new layer in theT����� framework
to interface with Intel SGX and the framework’s modular structure. The implementation
is split into the untrusted and trusted sides. The untrusted side is very closely integrated
with the implementation of T����� itself, but the SGX enclaves are implemented as sep-
arate individual binaries in a very di�erent environment. First, we outline how the added
translation layer fits in the T����� framework’s structure. Then some critical implemen-
tation details about the layer are discussed. Its main functions are presented and their im-
pact on the agreement protocol are outlined. Finally, the implementation of the S����BFT
protocol in the SGX enclaves in Rust using the Teaclave SGX SDK is presented. We out-
line some of the obstacles and problems which arise when implementing SGX enclaves
in Rust.

�.�. T����� BFT Framework
TheT����� framework ismodular by design and allows combining di�erent clients, pro-
tocols and applications. However, it is very flexible in allowing these modules to also per-
form tasks usually performed by other modules if necessary. For example, the protocol
module can easily add additional internal layers of encryption, which would convention-
ally be implemented to the communication layer. Wemake use of this flexibility to realize
the translation layer between T����� and SGX as a single protocol module. As the en-
tire safety-critical implementation lives inside the compartments, the layer will act as a
message broker and translation layer.
To interact with the modular T����� framework a new protocol module of S����BFT

needs to be created. Its main task is to act as a translation layer between T����� and
the trusted enclaves. Network messages are translated to ECalls and vice versa. Fig-
ure �.� shows the structure of the added modules. Directly connected to T����� is the
sgx-broker, which acts as the protocol module for S����BFT.
For the most part, the broker layer acts as a shim between the T����� API and en-

clave interface. As such, it receives all network messages. To interact with the enclaves a
generic enclave-handler crate is written with the task to provide a simple and safe in-
terface to send and receive SGX calls. In addition to the API translation, the broker also
ensures enclaves are started through these enclave handlers. It makes decisions about
where to route incoming or outgoing messages. OCalls are also performed by the broker.
Specific enclaves handlers are implemented for the exact interface defined in the EDLs
for the enclave types. The handlers are created and stored in the broker. Finally, all the
enclaves are implemented in their own environment. We follow the Teaclave SGX SDK

��

sgx-broker

themis/sgx-broker

sgx-keygen

themis/themis-tools/sgx-keygen

enclave-builder

themis/sgx-broker/enclave-builder

enclave-handler

themis/sgx-broker/enclaves/enclave-handler

first-app

themis/sgx-broker/enclaves/first/app

first-enclave

themis/sgx-broker/enclaves/first/enclave
preparation-enclave

second-app

themis/sgx-broker/enclaves/second/app

second-enclave

themis/sgx-broker/enclaves/second/enclave
confirmation-enclave

third-app

themis/sgx-broker/enclaves/third/app

third-enclave

themis/sgx-broker/enclaves/third/enclave
execution-enclave

- ECall/OCall Wrapper
- OCall Callback & Channels

- Stores handlers
- Holds OCall Receiver
- Receives Themis Messages

Common build.rs

build.rs build.rsbuild.rs

make called from build.rs

Figure �.�.: Rust code structure added to T�����.

v�.�.� documentation to implement the enclaves as no_std Rust library crates. To simu-
late the functionality of the Rust standard library the Teaclave SGX SDK’s standard library
replacement is renamed to “std”. This allows the enclaves to use Rust code developed for
a normal runtime environment for the most part. The replacement standard library does
not match the Rust standard library entirely and misses some features. Furthermore, this
means that only no_std dependencies can be used, or crates which have the exact same
Teaclave SGX SDK library replacement.

The enclave handling code is designed and implemented with the intent of being flex-
ible on where the threading-boundary is drawn, i.e. how many threads are used. This
is, for example, the reason that the untrusted side of each enclave, which implements
the enclave-handler interface, communicates with the broker using a multi-producer-
single-consumer channel. This allows us to easily have the enclave handlers run in their
own threads or using non-switchless SGX calls, and still allow T����� and the other en-
claves to make progress at the same time.

Additional to the necessary code to run S����BFT, we also added tooling to help with
deployment and compilation. The sgx-keygen binary is used once to generate keys which
are in the correct format for the OCalls of the enclaves. We use the Rust’s ring library ver-
sion �.��.�� to generate PKCS�� key pairs for each member of the protocol. This key gen-
eration needed to be altered from T�����’ included generator, as more keys are needed.

�.�. T����� BFT F�������� ��

Furthermore, in T����� with PBFT all keys authenticate the replicas equally, however, in
S����BFT the key is also used to identify the type of the enclave. Therefore, it is important
that all replicas agree on the mapping of keys to enclave types. In practise, this is ensured
by generating the keys in advance and deploying them to all machines and signing the
configuration. The key $ replica $ compartment mapping is also represented in the
directory structure and file name of the key on the file system.
The enclave-buildermodule contains generic code used in the build.rs files of the

enclaves. This enables the use of cargo build and other Cargo commands in theT�����
repository. An approach like this hides the internal use of make files, C-compilers and
SGX tools necessary to compile the enclaves. Using only Cargo to build the entire project
will also aid in testing and using CI/CD. One shortcoming of this approach, however, is
that only the build process can be augmented using scripts this way. We would have made
use of a cargo clean and cargo test hook to clean and test the artifacts created by the
make files, which the cargo toolchain itself cannot do yet.
The same custom Rust build scripts are also used to make the Rust compiler link to

the untrusted side of each compartment. Those custom build scripts also call make in
the correct order to build the enclaves. The make files are altered versions of the Tea-
clave example code, which are based on the Intel SGX SDK. Changes were needed to be
made to rename symbols inside the built enclave to avoid collisions when linking multi-
ple di�erent enclaves to a single binary. The colliding symbols originate from the trusted
standard library’s initialisation code in the Teaclave Rust SDK. Using the objcopy pro-
gram the conflicting symbols are prefixed by the compartment name just before linking
all artifacts together.
Rust’s build scripts allow defining a list of files and folders to watch for changes. Only

when mentioned files are changed the build scripts are run. This is used to limit the
amount of make calls, which are the slowest part of the current build process. Similarly,
using environment triggers the project is also rebuilt if some of the SGX environment
variables change. This includes the location of the SGX SDK and whether or not to build
in software emulation or hardware mode.
Also part of the framework at large are the applications replicated with BFT. We will be

using two pre-existing applications and adapt them to run inside the execution enclave
with S����BFT.

�.�.�. Benchmark Application
To test and evaluate the implementation of S����BFT we use di�erent applications. A
minimal application present in the T����� framework for PBFT is the so called “Bench-
mark Application”. This application accepts any incoming request and responds with a
small payload which can be ignored by the clients. A client is already present as part of the
T����� framework. For the benchmark application, the requests only consist of no-ops,
but the rest of the protocol needs to be executed as usual. This includes all communica-
tion rounds, signature checks and the correct encryption and decryption of requests. This

��

means once a commit quorum is present in the execution enclave the request is ignored
and an empty reply is sent to the client. This implementation also acts as a foundation
to implement further applications, as only the execution enclave needs to be changed in
terms of how the request is to be interpreted when a commit quorum is present. Even
though the requests and replies of the benchmark application are ignored by the replicas
and clients the size of the requests and replies can be altered to simulate the load on the
network and memory better.

�.�.�. Key-Value Store Application
The real-world application that is being replicated using S����BFT is a key-value store
(KVS) which implements the Yahoo! Cloud Serving Benchmark (YCSB) operations [��].
The data is stored in the KVS, similar to a hash map indexed by generic byte arrays. Val-
ues are also generic byte arrays. Operations include reading a record, updating a record
and deleting a record. For the application in a BFT-SMR system the KVS also supports
exporting and importing a state. The hash over the state needs to be identical on all
replicas whose state is identical, which means no randomized hash maps can be used. In-
stead, a B-Tree is used internally to ensure a deterministic state. The open-source YCSB
framework was developed to allow direct comparisons between data stores like Cassandra,
HBase, PNUTS and MySQL. It has been used in similar contexts to benchmark KVS and
database applications using trusted execution [��]. We focus on the most commonly used
operations, the CRUD API includes insert, update, delete and read operations.
YCSB is used for benchmarking cloud services using configurable workloads. Thework-

loads include di�erent distributions of read, write and update operations. Workloads can
also be executed in stages. Workloads begin with a load phase where data is inserted into
the database. The next phase runs the actual specified workload. The workloads are de-
signed to mimic data access in realistic patterns. YCSB supports various access patterns.
They mirror the real world where a few records get requested more frequently than most
others. This is similar to observed behaviour for in-memory caches as deployed by Twit-
ter [��]. The access patterns can be mixed with the read-write frequency to create more
complex workloads.
Figure �.� shows the starting point and necessary adaptations to compartmentalize an

existing KV-Store application for the T����� framework. The red components of the
diagram, namely the SGX broker and the E/OCall interface, are the main focus of this
thesis. They contain all necessary parts for the S����BFT protocol to run within T�����.
To use S����BFT with a new application, like a key-value store, the client does not need

to be changed. Only the replicated application itself needs to be placed into the execution
enclave, which might require slight changes.
With an existing YCSB T����� client, application wrapper and minimal KV-Store im-

plementation almost no changes are necessary. The data store was already implemented
with minimal dependencies and a small footprint, therefore, only small code snippets
needed to be adapted for the Teaclave standard library implementation. This was limited

�.�. D��������� V��������� ��

YCSB
Client

Themis
Application

Wrapper
KV-Store

Crate

YCSB
Client

Themis
E/O Call
Interface

KV-Store
Crate*

SGX
Broker

Figure �.�.: Adapting KV-Store application for S����BFT. The dotted line represents the the
trusted computing base’s boundary.

to changing and fixing dependency versions as well as renaming or aliasing types. Gener-
ally, common changes will be renaming the Mutex type to SgxMutex as well as including
some traits manually. The reason traits need to be included is that the prelude in the
Teaclave SDK’s standard library includes fewer traits than the normal standard library.
One of the missing traits, for example, is ToString, which exists in the Teaclave standard
library, but is not included in the preamble. When preparing a crate to be used inside the
enclave, another step can be eliminating allocations and introducing trait bounds which
do not require allocations like AsRef<str> and AsRef<[u8]>. It is important to reduce
allocations for performance reasons, but also because the enclave’s memory is practically
limited by the EPC.
The application wrapper needs to be reimplemented, as it is now split across the un-

trusted and trusted side. It needs to implement T�����’ interface on the untrusted side,
but perform protocol operations, especially cryptographic functions, in the TEE in en-
crypted memory. Because of the design of the broker no application module is deployed
on the untrusted side. Instead, the execution enclave deserializes the operation into an
enum of possible actions and then executes it accordingly. Responses are sent using
OCalls directly from the execution compartment as part of the protocol module. The
client benefits from the gained integrity and confidentiality without any changes, as it is
completely oblivious to whether it is talking to a compartmentalized environment or a
single application.

�.�. Dependency Versioning
T�����’ master branch at the time of implementation used Rust version nightly from
2021-02-17. The Teaclave Rust SDK’s latest stable release was version �.�.�, using Rust
nightly but from 2020-10-25 [�]. The community added further patches on top of the
stable release to support newer Rust nightly versions. To facilitate interoperability of the

��

T����� framework and the Rust SDK without back-porting the T����� framework Tea-
clave SDK’s commit b9d1bda6... was used for development of the enclaves inT�����. The
goal is to be able to update to the newest version of the Teaclave SDK, without having to
change the enclave code. The reason the stable Teaclave SDK commit tagged with v�.�.�
could not be used is because of a deprecated and removed nightly trait in core::alloc
called AllocRef used in sgx_alloc::System which is required for sgx_tstd.

Because cargo, the Rust toolchain’s package manager and build tool, doesn’t allow
changing major versions of deep dependencies, and we needed to change even the de-
pendencies’ versions of the Teaclave SDK to the specifically chosen commit, and not the
v�.�.� tag. All used crates needed to be forked, changed and updated. This was trivial
for the Teaclave SDK’s internal crates, as they used path dependencies, and checking out
the correct version su�ces. The external crates, however, depended on the revision v�.�.�
which uses the git tag of the Teaclave SDK’s repository to determine the code used. We
built on the work of dinglish/sgx-world and forked it to mabecker/sgx-world.

A script was written and used to updated all mentions of the tag v�.�.� to the chosen
commit, and we then manually create and pushed the changed repositories to forks cre-
ated on our GitLab.

�.�. Code Reuse

Sharing code between the untrusted side and the trusted enclaves is not straight-forward.
Because the enclave and the untrusted side use di�erent std libraries no codemaking use
of the standard library could be shared. The workaround for this is writing all code, that is
possible to write without using the standard library, as a no-stdmodule. Small reusable
Rust snippets often only need access to the alloc crate for common collections and heap
allocations. However, to be included from an enclave a crate is not allowed to be part of
the T�����module tree, as even including a no-stdmodule out of a larger module tree
triggers an error about two competing std implementations. In practise, we have found
that a symbolic link between a version that is excluded from the T�����module tree but
path-linked to the enclave, and a version that is included in the T�����module tree does
work. This even allows there to be tests and documentation that are generated as part of
the T����� workspace.

There are also other alternative approaches, which lack this integration but are easier
and faster to accomplish. The first, which is used for code which is slightly di�erent
between enclaves, is the inclusion of Rust code containing amacro. By using the include!
macro, a file can be included in rust code directly. If this file then defines a macro, the
macro can be called and create slightly di�erent code for each enclave. The downside of
this approach is that the main file is not considered part of the workspace and tools and
IDEs do not know how to treat it.

https://github.com/dingelish/sgx-world
https://gitlab.ibr.cs.tu-bs.de/mabecker/sgx-world

�.�. D�������������� ��

A second alternative is creating symbolic links to Rust files. This allows the parent
to define a submodule in Rust which is then defined by the linked file. The advantage
of this is a slightly easier to read code. The linked files are also considered part of the
workspace and, therefore, work better with linters [��] and other programming tools which
are usually well integrated in the Rust toolchain. One downside of this approach is that
the symlinks do not always report changes when the target changed, whichmeans changes
might not be present everywhere in newer builds without cleaning old artifacts.
These approaches can also be mixed. We use all three methods to share code. We have

a no-std module, which is included by both the untrusted and trusted side using the re-
naming scheme. Inside of this module we use the include! macro to create another
macro definition from file. This macro definition is called directly in the shared code for
the untrusted side, the trusted sides, however, call the included macro once each them-
selves. This macro contains most of the type definitions used to communicate over the
network and across the ECall/OCall boundary. Finally, a symlinked file is used in each
compartment to define the structure and global variables for the log inside each enclave.

�.�. Diversification
Wewant the S����BFTprotocol to be able to be diversified. The untrusted side of S����BFT
can be diversified like any other BFT protocol implementation. Compartments can be di-
versified in code as well as in the TEE technology used.
To diversify the compartments one approach is re-implementing the SGX enclaves by

hand. This can also be done automatically [��]. Because the interface with the enclaves is
pre-defined by the ECalls and OCalls, it is easy to make sure a di�erent implementation
has the same interface. This also allows re-implementation in di�erent languages, as the
function interface with the ECalls and OCalls is language independent. All data that is
sent with ECalls and OCalls are either raw pointers to memory locations the enclave can
use or serialized data. Both of which are also language independent.
Diverse binaries can be achieved using N-version development by di�erent teams [�] or

can be automatically generated from a single source [��]. Because Rust’s foreign function
interface (FFI) can be used with statically linked binaries from other C-ABI languages,
diversification can implement parts of the enclaves in di�erent languages and keep a small
Rust wrapper. This could speed up development of the diverse enclave implementations.
The wrapper would only have to handle ECalls and OCalls and then call the FFI with the
deserialized messages. This wrapper would also need to be diversified.

�.�. ECall & OCall Interface
We choose to implement a generic ECall and OCall interface to aid diversification. By
having only a single ECall and OCall, which accepts arbitrary data we have the ability to
pass serialized data in a format which gets deserialized on either side. Using an enum

��

type we gain the ability to encode multiple ECalls and OCalls using the single defined
physical ECall and OCall. This gives us great flexibility when choosing how to process a
deserialized call as well as eases re-implementing in another language.

After enclaves are created using the Teaclave SGX SDK they are written to expect a spe-
cial initialization ECall, which they only accept as their first ECall and only accept once.
This Init ECall contains only a single field, an arbitrary sized byte array, which can con-
tain arbitrary data specific to each enclave and application. In our implementation we
chose to use this data for loading runtime information derived from the configuration
files, like key paths and system information. The extreme alternatives would be either to
load this data using OCalls on demand, or hard-coding this data into the enclaves. Hard-
coding data into the enclaves would have the advantage that a compiled and signed enclave
cannot be tampered with until started, thus the keys’ integrity is not broken. If the un-
trusted side attempted to pass incorrect keys and configuration to the enclave, the enclave
would be able to detect this by checking signatures and not accept incorrect data. This
means the untrusted side can atmost cause the enclave to not initialize, which only attacks
liveness. In execution enclaves, the response to the client is encrypted using a symmetric
key. Leaking this symmetric key from the execution enclave would allow an attacker on
the network to read replies to the client from this enclave. This breaks confidentiality.
Therefore, we need to ensure the symmetric key used for this purpose is also signed and
verified by the execution compartment. Otherwise the untrusted side could pass a di�er-
ent key and cause the loss of confidentiality with a single fault on the untrusted side.

For these reasons it is necessary to sign all key-data with a key that is hard-coded into the
enclaves. Keys can also be loaded into the enclave out of the untrusted file system as long
as the keys from the untrusted file system are signed by a key which is hard-coded into the
enclave. The key used to verify the configuration should only be held by the administrator
of the replica. By compiling enclaves with di�erent hard-coded keys for di�erent replicas,
administrators can also be limited to be able to a�ect single machines only. In a setup
like that, we still have the flexibility to change the configuration without recompiling the
enclaves, but know that an attacker is not able to convince an enclave to use incorrect keys,
as the attacker is not able to break asymmetric ECDSA-����� cryptography. Hashes over
the data are created using the SHA-��� algorithm, which the attacker is also not able to
find collisions in.

The trait definition in code listing � is added to a Rust file when the make_sharedmacro
is invoked. The definition of the macro is inserted from a file. This is a work around
we found to allow code to be included in both the untrusted and trusted parts of code
while using the std library. The code generated by the macro invocation is around ����
formatted lines of code including documentation. The snippet displayed in the following
listing creates the interface for calling the ECall and OCall wrapper generated by the EDL
file on any serializable type. Both of these functions are used on the inside and outside of
the compartments:

�.�. EC��� � OC��� I�������� ��

pub trait SgxArgument<'de>:

Deserialize<'de> + Serialize + fmt::Debug

{

fn call<F, R>(

&self, sgx_call: F, mutable_value: &mut R,

) -> Result<sgx_status_t, sgx_status_t>

where

F: Fn(*const u8, usize, &mut R) -> sgx_status_t,

{

let boxed_slice: boxed::Box<[u8]> = ::rmp_serde::to_vec(self)

.map_err(/* ... */)?

.into_boxed_slice();

let retval = {

let len = boxed_slice.len();

let ptr = boxed_slice.as_ptr();

sgx_call(ptr as *const u8, len, mutable_value)

};

Ok(retval)

}

unsafe fn from_raw(

data: *const u8, len: usize,

) -> Result<Self, sgx_status_t> {

let data = slice::from_raw_parts(data, len);

::rmp_serde::from_slice(data)

.map_err(|_| sgx_status_t::SGX_ERROR_INVALID_PARAMETER)

}

}

Listing �: Generic ECall and OCall interface for serializable types.

When using the call function the argument type is serialized and the safe wrapper for
the SGX call is called. This is done to be able to call the ECalls and OCalls with arbitrary
types without using unsafe code to do so. Which ECall or OCall is called is determined
by a pointer to the function as the first argument. This function is then called with the
serialized second argument as a byte slice and its length. A mutable reference can be
provided to allow the target function to return a value alongside the SGX return status.
This translation is analogous to the Rust and C interface generated by the Intel SGX SDK.

��

On the receiving end, arguments are deserialized using the from_raw function. First a
slice is constructed from a raw pointer and its length. This operation is unsafe and re-
quires the function to be called with correct arguments. Therefore, the function ismarked
as unsafe, which requires calling code to wrap it in an unsafe block. This encourages
callers to be cautious. The caller also determines the return type using type annotations.

The T����� framework already uses MessagePack encoding for serialization of proto-
col messages across the network [��]. MessagePack is also used to serialize data which is
passed in and out of enclaves. The serialization format is independent, but MessagePack
is a good fit for ECall/OCall arguments.

Figure �.� shows howmessages are serialized and passed between clients and compart-
ments. MessagePack is also used to serialize messages for communication between the
replicas themselves.

Figure �.�.: Serialization and communication scheme of protocol messages.

When serializing, the signature of amessage is considered part of themessage. For each
message type there is a method for creating a digest independent of the signature field.
This independent digest is used to create and append the signature without changing the
digest itself. This design decision does require deserialization for signature checks, how-
ever, deserialization is already required to determine which public key to check against.
The advantages of MessagePack is that is is an e�cient binary format, which is faster and
smaller than JSON. For example, a ECall informing the enclave about an expired timer
Timer{MillisSinceLastRequest(1000)} is serialized into � bytes as [129, 9, 145,
129, 0, 205, 3, 232]. The smallest JSON version of this struct is {9:[{0:1000}]}
using �� characters (��� bytes), which makes JSON 14⇥ larger in this example. This for-
mat can be easily deserialized because the ECall and OCall type is an enum, the 9 in the
serialization is the number of the enum variant, the contents of the contained array are
the inner values. The variant number and interpretation of the inner attributes is based
on the Rust implementation, which is identical on the untrusted side and the enclaves.
Implementations in other programming languages have to have the correct mapping, but
are not required to use the same types internally.

�.�. B����� I������������� ��

�.�. Broker Implementation

As mentioned above, the broker represents the translation layer between T����� and the
SGX enclaves. It brokers and routesmessages between the network and the enclaves using
enclave handlers. To conform to the T����� interface requirements the broker is a single
Rust type containing references to the handlers, which initialize and pass messages to
the enclaves and can be polled for OCalls. The broker also supports configurable request
batching from the communication module of T����� [��].

T����� provides two di�erent interfaces a protocol module has to implement. The
Protocol trait is used to provide a simple interface to define message and event types.
The Protocol2 trait ensures a type has all necessary callbacks T����� uses to call into a
protocol module. The broker implements both the Protocol and Protocol2 interfaces
to be instantiated as a protocol in T�����. This ensures that the broker is able to handle
messages from the other module types. This includes messages from the client, messages
from other replica’s protocol modules and messages from the local application module.
T����� itself uses the tokio library version �.�.� and asynchronous Rust to schedule work
and enable concurrent execution. It uses tokio’s mio and mpsc for asynchronous IO and
multi-producer-single-consumer message channels respectively. The interface that mod-
ules need to implement forces them to use the same libraries. We define a simpler net-
work message type than the included PBFT messages, because messages need to be dese-
rialized anyway and explicit tagging before deserialization is not required. For incoming
messages, the broker determines the target enclave and routes the message into those en-
claves using immediate ECalls. After performing an ECall, the broker queries its enclave
handlers for newOCalls which could have been posted in themeantime. The enclaves can
only post OCalls to the queue while they are called with and ECall. This means the broker
only has to check for new OCalls after an ECall. Because the OCall generated by the Tea-
clave SGX SDK is static and not bound to an object created within the broker we need to
register the handlers in a global list for each enclave type to receive OCalls. The complex-
ity of this structure is handled per enclave type in its untrusted side and only linked to the
broker and T����� as the final compilation step. When the enclaves OCall reaches the
static code in the untrusted side it uses a global store behind a mutex to get references to
the registered handlers. Each handler then enqueues the call data into an internal queue,
but the call is not handled immediately. At a later time, after the initial ECall has been
completed the broker queries each handler. If any OCalls exist, they are consumed and
executed in order. Processing OCalls may require new ECalls to be issued, which may
lead to longer execution chains. Outgoing protocol message OCalls always require both
ECalls into the local target enclave types as well as network messages to be sent. When,
for example, the preparation enclave wants to send a prepare message to the confirma-
tion compartments n � 1 messages will be sent over the network to other replicas but one
message will be passed to the local confirmation enclave using an ECall. Because we batch

��

OCalls as much as possible, a single OCall is performed to instruct the untrusted side to
send all these messages. All OCall network operations are executed asynchronously by
spawning a new worker in tokio.
Because the execution enclave also has to contain the application itself, the broker also

performs the actions of an application module which is otherwise absent when running
S����BFT in T�����. The broker layer could also have implemented the application in-
terface, which would allow it being used as both the application and protocol module in
T�����. This would be closer to the intended T����� structure, but would lead to some
problems. First, entirely technically, the modules are meant to be di�erent to eventually
be executed concurrently. But second, and more importantly for S����BFT to function it
would be required to instantiateT�����with the exact same broker as protocol and appli-
cationmodule anyway. Having the broker implement both interfaces wouldmake it seem
as if it could be used individually as either, but because the execution enclave containing
the application and participating in the protocol needs to be the same the broker could
only be used with itself. Because this would lead to confusion, we decided to implement
the application completely opaque to T����� within the protocol module.
When request batching is enabled the request batching scheme from the communica-

tionmodule inT����� is used. Instead of sending single requests to the preparation com-
partment batches are always used. These batches may only contain a single request. The
preparation compartments check that all requests inside the batch are correctly signed
before preparing. When ordering a batch only the digest of the batch is used. The exe-
cution compartment receives the batch from the preparation compartments and when a
commit quorum is present all inner requests are decrypted and executed in order.

�.�. Enclave Implementation
The SGX enclaves are implemented as Rust library crates which compile to a static library.
Afterwards, the usual Intel SGX SDK toolchain can be used to generate a signed enclave
binary from the static library. It uses an EDL file to generate the wrapper for ECalls and
OCalls which are used on the untrusted and trusted side. The untrusted side as part of
T����� is then able to spawn the enclave using the untrusted side of the Teaclave SGX
SDK. Which programming language was used to write the enclave is independent of the
untrusted side as long as the same functions are exposed as ECalls.
The general structure of the implemented Rust enclaves is very similar. They all contain

definitions for the di�erent types of ECalls and OCalls. To keep the EDL interface simple,
they only expose a single ECall accepting arbitrary data which then deserializes into a
variant of an enum. These ECalls are initially handled identically in all enclaves. This
is because their initialization requires the same steps, in which they fetch the necessary
configuration and keys. However, if the ECall contains a protocol message the way the
message is handled changes depending on the protocol message variant and the enclave
type.

�.�. E������ I������������� ��

Because of the unique runtime environment and dependency problems we are limited
to a few possible dependencies to fulfill common tasks. We use the ring crate to perform
cryptographic hashing and encryption. To serialize and deserialze on the trusted and
untrusted side we use serde version �.�, andmore specifically the rmp_serde crate version
�.��.� to work with the MessagePack binary format.

�.�.�. Protocol Messages

Protocol messages are represented as an enum of variants from table �.� containing all
necessary data. The structure is taken from the PBFT protocol, however, because of the
changed signing scheme the keys used for signing and encryption are changed as de-
scribed in the design chapter. Protocolmessages are created in the client and the enclaves.
They travel over the network wrapped in struct containing information about the type
of protocol used to create the contained message. When entering or leaving the enclaves,
protocol messages are placed in a wrapper struct as well and the entire wrapper is seri-
alized. The T����� framework enforces tagged messages for network communications.
Thismeans for network communication allmessages are wrapped in a type containing the
protocol message’s serialized data alongside this tag. For S����BFT we use a placeholder
tag, as it does not need to be used. The tag is intended to closely mirror the notation of
BFT papers like PBFT [�]. Because the tag cannot be trusted, as it is handled and added by
the untrusted side and only the serialized inner message is signed by an enclave, tagging
is not useful for S����BFT. When a network message is exchanged it is deserialized in
steps, first only the outer type containing the tag. This wrapper could contain additional
information. For example, the PBFT implementation contains the option to add optional
flags for READ_ONLY, HASH_REPLY, UNSEQUENCED and NO_REPLY. While these could be used
for the SplitBFT implementation too, we instead would use the protocol message variant
to encode these options. The implemented applications do not make use of these flags.

�.�.�. Message Log

All enclaves have their own global message log. This object is used to securely store past
messages which are still relevant to the agreement process. The message log is stored as a
SplitBftLog defined in code listing �, which deduplicates messages as much as possible.
Because only verified messages are added to the log at all, the untrusted side can only re-
play old messages to pass the signature check. This avoids the untrusted side performing
a denial-of-service attack by filling the compartment’s memory with replayed messages.
The untrusted side cannot construct new messages that pass the signature check because
the necessary key is only present in other compartments. All functions interacting or re-
turning data from the log return references, this reduces the amount of copies. After a
message is deserialized from the ECall it is added to the log once, following uses of the

��

message always use a reference. When a message is sent using data from the log, a refer-
ence from the log is used to serialize, to avoid another copy. Each deserialized or created
message only takes up memory once in each enclave at most.

struct CheckpointIndex {

sequence_number: Id,

state: Data,

}

pub struct SplitBftLog {

messages: Vec<Arc<SplitBftMessage>>,

checkpoint_messages: HashMap<

CheckpointIndex,

HashSet<Arc<SplitBftMessage>>

>,

low_mark: SequenceNumber,

}

Listing �: S����BFT log format used inside of the compartments.

The SplitBftLog contains a second data structure for checkpointmessages. The check-
point messages are also added to the general message log. This is the reason for using
Arcs to store the messages. They allow shared ownership of the underlying message,
once all references are dropped, the memory of the message is freed. When a check-
point message is added to the log, it is also interpreted and added to the correct set in
the SplitBftLog::checkpoint_messages member based on the sequence number and
state. This additional structure is only used to speed up finding the newest stable check-
point. Once a new checkpoint is stable checkpoint messages need to be removed from
the hash map as well as from the general message vector. Otherwise, the memory would
not be freed. This, however, is easy and fast as deleting all values in the hash map with
a key of earlier sequence number is enough. Garbage collecting messages from the gen-
eral message log is also linear to the length of the message log. A DrainFilter is used
to remove all messages of an older sequence number. Using a DrainFilter like this also
returns the messages it removes from the log. This allows us to check that messages are
successfully removed from both the log and checkpoint hash map, because we can check
the number of remaining references to the returned messages. As long as only one ref-
erence is left, the drained one, we can drop it knowing well that this frees the memory
associated with the message. These data structures could also be used while having the
memory for the actual message data located outside of the enclaves. Doing so, however,
would require complex integrity checks. Because the EPC size can be extended using new
multi-processor platforms and in our testing memory size never became a limit for the
applications we are using we choose to keep the messages in the enclaves.

�.�. C�������� I���������� ��

�.�. Continous Integration
We use the CI/CD capabilities of GitLab to ensure functionality of T�����. CI/CD checks
every commit that our S����BFT code does not break its own tests or any of T�����’
tests. The Rust programming language includes tools for testing as part of the standard
toolchain. It makes it convenient and easy to write unit and integration tests. Due to the
di�erent runtime environment of the enclaves the same tooling cannot be used inside the
enclaves. However, the workaround we found to still test enclave code in CI is compiling
using SGX software emulationmode and writing tests on the untrusted side which spawn
an enclave and cause it to run a test. The Teaclave SGX SDK provides its own testing
framework, however, we did not find it adaptable enough to run in CI. Having the ECall
interface be as generic and flexible as it is allows us to declare tests on the untrusted
which are executed in the enclave and results get reported back. Using a conventional
ECall interface would require defining additional ECalls in the EDL interface specifically
for testing.
Some unsafe Rust code has been verified with Coq in the past [��]. Coq performsmech-

anised formal verification. Creating a formal model for a BFT protocol is a complex and
error-prone task. We, instead, only verified selected pieces of unsafe code present in all
enclaves using miri [��]. Unlike of a formal verification, miri only performs runtime
analysis and checks for some common types of runtime errors. For example, listing �
was tested and miri confirmed that provided that all arguments are not maliciously con-
structed the call is safe. This gives us confidence that these pieces of code will not segfault
or leak memory during normal operation. Especially with code that is inside the enclaves
this ensures some common attacks like overflows are unlikely to be possible.
A CI-Pipeline tests both the framework and the added SGX-specific code. The pipeline

uses the Gitlab CI runner, compiling and testing the entire T����� project, including the
additions made in this thesis, inside a docker container made for this purpose. The CI
docker container mtibbecker/sgx-Rust with tag 2021-02-17 is based on the Teaclave
SGX SDK developer’s baiduxlab/sgx-Rust container. The base container is an Ubuntu
��.�� container with a lot of additional dependencies needed for SGX and Rust. A result
from that is the rather large size of the base container itself, reaching ⇡ 650 MB when
compressed. Changes made on top of this container for use in CI include updating the
Rust and cargo versions to the versions used inT�����with S����BFT. This increases the
compressed container size to 844.46 MB. The CI runner does cache containers, therefore,
the entire image does not need to be downloaded every time the CI is executed.
The CI pipeline is run on every push to the git repository and even runs tests which start

and enter the enclaves using SGX’s software emulation mode. Due to a race-condition in
the compilation of the sgx-unwind dependency of the Teaclave SGX SDK a compilation
failure can happen randomly. GitLab-CI supports retrying a CI pipeline on failure, up
to three attempts. While this makes a false negative in practice less likely, there is still
a chance the project’s CI pipeline gets marked as failed, even though the build and tests
would succeed.

��

Unit Testing In comparison to the PBFT implementation in T�����, testing is funda-
mentally di�erent because of the compartmentalisation. This is because we are able to
test each enclave on their own. In contrast, for PBFT testing the entire replica needs to
enter a wanted state to test it’s behaviour at that point, we, however, only have to con-
vince a single enclave to enter a state we want to test without involving the entire rest of
the replica. For example, we are able to test the execution enclave by sending it correctly
signed commit messages in a test environment, without the need to have pre-prepares
and prepares agreed on by the other enclaves. However, fully integration testing the en-
tire replica requires spinning up all the enclaves and broker, making this part of testing
slightly more di�cult than testing standard Rust code for the PBFT implementation. We
develop ansible playbooks and other scripts to deploy and test S����BFT on realmachines
alongside the unit tests in GitLab’s CI/CD.

�.�. Problems with the T����� framework
Working inside the T����� framework to implement S����BFT is generally convenient
and intuitive. However, during the implementation process some possible opportunities
to improve the usability of T����� in the future became visible.
For components ofT����� to be interchangeable they have to implement a lot of di�er-

ent traits, to enableT����� to use them. BecauseT����� ismodular and uses callbacks, it
requires its modules to at least implement those necessary callbacks. This can, for exam-
ple, be seen in the Protocol, Protocol2 and Application trait. We found that because
we combined the protocol and application trait some required functions were not used at
all. Implementing the Application trait allows T����� to take control and possibly pro-
vide some functionality for checkpointing and fast-track requests using RequestFlags.
While this could be far more beneficial with further development of T�����, these pro-
vided functionalities might, on the one hand, not be wanted or required or, on the other
hand, not be worth the overhead of implementing the necessary traits and including their
dependencies. In our case specifically, implementing the Application trait for the exe-
cution enclave would entail deserializing the request bu�er, interpreting it (whether it is
a request, a checkpoint, etc.), then reserializing and executing an ECall which then dese-
rializes again and performs the operation requested from the outside if the data can be
verified. The problem, however, is that the enclave needs to deserialize, verify and inter-
pret the data anyway, and as it can not trust the outside to interpret requests correctly,
would need to do work twice.
Instead, for easier prototyping and implementing protocols that are less similar to

PBFT a simpler version of the T����� traits would be preferable. This trait would ide-
ally be agnostic over request and protocol data, always treating it as a simple byte bu�er
without tags. An Application trait like this would also allow writing a simple adapter for
any running binary to be used with the T����� framework, as long as a socket or channel
passing bytes is available.

�.��. P������� ���� ��� T������� SGX SDK ��

T����� could still perform network and batching operations, but should not force pro-
tocol tags on every network message. The simple protocol trait should not show the user
any of the inner workings of T�����, like the threading with tokio or pre-parsing of the
messages for protocol tags. Instead, a simple interface, just passing received bu�ers over
the network are handed to the implementer of the simple protocol trait. Batching can
be done, however, needs to be configured at the start using flags and attributes which are
sent with every message. Like configuration now, this should be possible to do using the
configuration files.

�.��. Problems with the Teaclave SGX SDK
While working with the Teaclave SGX SDK extensively some problems kept coming up.
They all seem to originate from small design decisions at the core of the Teaclave SGXSDK
which havewide ranging e�ects. It starts with the SDKnot being structured like other Rust
libraries which interact with the operating system and hardware. Normally *-sys crates
bind and link themselves to whatever library they require. To use the Teaclave SGX SDK,
however, not only does the repository be checked out locally for EDL and Makefiles for
the compilation of the enclaves, but also the untrusted side needs to be manually linked
to several libraries. While other *-sys need to do this once, Teaclave SGX SDK defers this
linking step to the application, for no apparent reason. This complicated the build step,
and makes examples and tests much harder to write as they are not linked the same way
by Cargo like applications are. We were able to write build scripts to simplify the build
processes, but build scripts like the ones we constructed could be included with example
code or made unnecessary be a restructuring within the SDK.
Due to the particular build requirements and project structure the otherwise very con-

sistent Rust documentation cannot be used. While the Teaclave SGX SDK crates are pub-
lished to crates.io and therefore are attempted to be built on docs.rs, this fails since the
build cannot succeed without a very specific setup and hardware support. This leads to
very outdated or non-existent documentation in the regular locations. By adding and set-
ting feature flags for conditional compilation a minimal version of the Teaclave SGX SDK
could be made to compile on the docs.rs environment and at least provide some docu-
mentation at the usual locations. However, to cope with this on of the developers of the
Teaclave SGX SDK host their own docs for each of the inner crates. Because there is no
virtual workspace all the docs are generated separately and this makes it impossible to
search the entire documentation for a type or function without knowing the exact crate
it should be contained in. Also, because this is not an automated process for each SDK
version, the documentation hosted is for the current stable version, and is not visible for
newer or older versions. Because we needed to upgrade the Teaclave SGX SDK to a newer
version to support Rust language features T����� uses, we had to compile and host our
own documentation for the version we used. During this process we found that some
parts of the Teaclave SGX SDK are documented very little or not at all. This lack of up-

��

dated and useful documentation created an incentive to start our own documentation of
the Teaclave SGX SDK concerned with its quirks and features on our own GitLabWiki. To
do this we developed a script, whichmost likely is similar to the script used by the Teaclave
developers to generate their documentation. While it is understandable that Rust nightly
versions will have breaking changes regularly, it would have helped with porting depen-
dencies and deciding on a version to use if more versions were tagged and numbered in
the Teaclave SGX SDK. At the time of writing the master branch’s version is completely
incompatible with the latest stable version but it has not received a version bump. Any
dependency using it, even if the dependencies didn’t replace the standard library, are not
compatible with both versions.
An additional choice which lead to us spending considerable amounts of time and ef-

fort updating and porting dependencies is the design philosophy behind the “sgx-world”
repository. This repository is a collection of forks of commonly used Rust modules with
a few changes. Most importantly they are changed to compile without a standard library
by the inner #![no_std] attribute. Then, to allow them to use the re-implemented stan-
dard library inside the enclaves, the SGX standard library is included and rename to “std”,
which replaces it in the rest of the project. This replacementmeans that amodule like this
can never be used together with another which doesn’t have the exact same replacement.
Otherwise the conflicting “std” definitions collide. This also occurs if the used standard
library replacement is a di�erent version of the SGX standard library. This could be made
a lot easier to maintain if instead imports to the correct SGX standard library were added
to the necessary files. While this would be very complex for large projects, it could be done
semi-automatically, close to our approach presented which updates changes the version
of the standard library used. Or di�erent Teaclave SGX SDK could be included using fea-
ture flags from an automatically generated selection by amacro. However, most sgx-world
crates are small or at least limited to a few files and a process like this would be very sim-
ple. Most of the di�culties of the replacement are also self-imposed by the Teaclave SGX
SDK like the apparently unnecessary renaming of the “Mutex” and “RwLock” to “SgxMu-
tex” and “SgxRwLock” Ideally, the sgx-world approach would be abandoned in favour of
adding a feature flag or target profile to use the SGX types.

�. Evaluation
During the implementation of S����BFT in T�����, we use benchmarks to guide our
choices. Especially inside of the enclaves, where a di�erent runtime environment is found
to most normal software. We evaluate possible dependencies’ performance for crypto-
graphic operations. We use benchmarks of the system running locally and distributed on
a set of networkedmachines to determine and compare S����BFT’s performance to PBFT.
To determine the limits of the performance of S����BFT, we use a benchmark application
for maximal throughput. For the sake of representative results, we deploy S����BFT with
a KVS and run realistic workloads. We also examine the final S����BFT enclaves using
di�erent metrics to measure the size of the TCB.

�.�. Hashing Algorithm

Hashing is used to create a smaller digest of larger request or protocol messages used to
reference those messages. The hashes need to be cryptographically secure to ensure they
cannot be forged for the application within a BFT protocol. This is necessary, because
otherwise a malicious member could create and distribute forged messages with match-
ing hashes to a correct request. This would disrupt the integrity of the system, because
di�erent execution compartments would execute di�erent operations. Hashes also cre-
ate the foundation for digital signatures, which we use to sign all messages. Therefore,
hashing needs to be fast and secure.
Inside the enclaves we have access to a few hash functions. We will run benchmarks to

aid in choosing the best hashing algorithm to use for S����BFT. The following bench-
marks and measurements are taken inside a Rust SGX Enclave. The host is running
Ubuntu Bionic ��.��.� LTS with 4.15.0-143-generic kernel, on an Intel(R) Xeon(R) E-
����G, �� Core hyperthreaded CPU running at �.�GHz, boosting to �.�GHz.
The benchmark measures the time taken to hash a list of realistic requests containing

both primitive data and byte arrays. The measured hashing algorithms include:

�. sgx_tstd_default: A port of the default hashing algorithm in the Rust standard li-
brary. This hashing algorithm is allowed to change between Rust implementations,
but in this instance is SipHasher13 with zeroed keys. SipHash is meant to be per-
formant first, it does permits keyed hashing for security, but while it is generally
strong, it is not meant to be used for cryptographic hashing [�]. Another upside of
this implementation is that it implements the Hasher interface from the standard
library, and, therefore, is better integrated with general Rust code.

��

�. sgx_tcrypto_sha1: The Rust SGX SDK’s sgx_types crate contains this undoc-
umented Sha� implementation, apparently present in the libsgx_crypto library
v�.�, though also not documented in the Intel SGX Developer Reference [��]. As the
benchmark will show, it is very performant, however, as it is neither documented
nor cryptographically secure, should not be considered for this task.

�. ring_sha512: Implementation for SHA-��� in the Ring library. This implementa-
tion follows the specification FIPS ���-�. This is the fastest cryptographically secure
hashing algorithm available in the enclaves.

�. ring_sha384: Implementation for SHA-��� in the Ring library. This implementa-
tion follows the specification FIPS ���-�.

�. sgx_tcrypto_sha256: A shallow wrapper around the libsgx_crypto library func-
tions sgx_sha256_init, sgx_sha256_update, and sgx_sha256_get_hash. This al-
lows a secure and hardware optimized implementation of the SHA-��� algorithm
[��]. This is likely the reason why this version outperforms Ring’s SHA-��� imple-
mentation.

�. ring_sha1: Deprecated implementation for SHA-� in the Ring library. This im-
plementation follows the specification FIPS ���-�. SHA-� is not considered crypto-
graphically safe and is only included here as a point of comparison. This is the only
non SHA-� family hashing supported by the Ring crate.

�. ring_sha256: Implementation for SHA-��� in the Ring library. This implementa-
tion follows the specification FIPS ���-�.

Hashing is performed using the ”Init, Update, ..., Update, Finish” method. Another ap-
proach would be to serialize into Vec<u8>s and hash over the contiguous memory region.
Serialization, however, is more expensive than the entire hashing, at approximately ��%
more expensive than any of the tested hashing algorithms, therefore, becomes too much
of an overhead, even without considering the unnecessary allocations and data duplica-
tion inside of the enclave. However, for messages to pass through the enclave boundary
they need to be serialized, therefore, in the enclave, both the serialized and deserialized
version of both incoming and outgoing messages are available.
To rank the mentioned hashing algorithms by performance and choose the optimal al-

gorithm for this taskwe run the algorithms for di�erent sized payloads inside the enclaves.
The results of this benchmark is shown in figure �.�. The enumeration above is sorted by
the performance shown in the benchmark. Ring having the best performing secure hash
function is a positive result for our application. It means that we can use the Ring library
inside and outside of the enclave, as Ring is already used by T����� internally.

https://github.com/apache/incubator-teaclave-sgx-sdk/blob/c2698dc2685f8dcd9550086c62077bceff15ded0/sgx_tcrypto/src/crypto.rs#L168-L262
https://github.com/apache/incubator-teaclave-sgx-sdk/blob/c2698dc2685f8dcd9550086c62077bceff15ded0/sgx_tcrypto/src/crypto.rs#L168-L262

�.�. H������ A�������� ��

Figure �.�.: Time spent in enclave hashing requests in a di�erently sized list using di�erent hash-
ing algorithms.

Because figure �.� is mostly linear, as is expected, and shows little variation we can
determine the average hash time per request in the log for each of the algorithms. This
cost per hashing operation is shown in figure �.�.

Figure �.�.: Benchmark of hashing requests using di�erent available hashing algorithms inside
SGX enclaves.

��

The evaluation shows that Ring’s SHA-��� implementation is the fastest hash from the
SHA-� family. This may be due to hardware support on the machine and might be di�er-
ent on di�erent CPUs with other feature support. With SHA-��� being a common and se-
cure hash to be used in all kinds of applications, it is likely to be optimized and supported
further by many CPU vendors. Notably, the SHA-��� implementation even outperforms
the smaller SHA implementations. This is most likely due to the interest in safer hashing
algorithms and Ring as well as the CPU feature support aiming to optimize for SHA-���
hashing [��].
With features like SIMD SSE operating on larger words, the Ring library can perform

optimal SHA-��� operations in CPU ring �. The performance of the Teaclave SGX SDK’s
SHA-��� algorithm is still competitive and likely makes use of the same optimizations.
Larger hashes benefit from this native support more than smaller hashes. However, the
reason Ring outperforms the Teaclave SGX SDK’s SHA-��� implementation is likely due
to Ring’s implementation’s ability to be inlined and analyzed by the Rust compiler. The
Teaclave SGX SDK links and calls the Intel SGX SDK’s implementation in C, which can
not be optimized in the same way.

�.�. Trusted Computing Base Size

Compartment Binary size LOC Unique LOC
Preparation �.�MB ���� ���
Confirmation �.�MB ���� ���
Execution �.�MB ���� ���
Total �.�MB ���� ����

Table �.�.: TCB size of separate compartments in di�erent metrics for the KVS application.

Table �.� shows the TCB size of the di�erent compartments. The execution compart-
ment contains an in-memory YCSB-compatible KVS implementation. Keeping the lines
of code (LOC) as low as possible is desirable to reduce the likelihood of bugs. In the same
vein, reducing the amount of code shared between compartments is advantageous, to
guarantee independent failures. On the untrusted side, the broker layer defining the pro-
tocol module for T�����makes up ���� additional lines of code. The remaining T�����
framework itself contains ����� lines of code. Once the replica code is compiled it cre-
ates a binary of �� MB for the untrusted side. Some libraries, like libc, libpthread, lib-
sgx_urts and libsgx_enclave_common are linked dynamically and configuration data is
loaded from disk at runtime. The enclaves are linked statically. The LOC metric has to
be interpreted cautiously, as automated diversification can achieve independent failures
even with shared code. Most of the actual shared Rust code in the enclaves contains type
definitions, which all enclaves need as well as the log structure, which is useful in and
identical between all compartments. Not included in the LOC count are lines from the

�.�. D���������� B��������� ��

Teaclave SGX SDK, serde and ring dependencies. The unique LOC almost entirely rep-
resent the protocol code, and how to handle parsed incoming protocol messages. It is
also important to note that formatted Rust code is lower density than comparable system
programming languages like C or C++.

�.�. Distributed Benchmarks
The most telling benchmarks of S����BFT’s performance are run across multiple ma-
chines. We use a tmuxp script and ansible playbook to build, distribute and run all
benchmarks on a set of networked machines at once. Unless otherwise stated the bench-
marks are run distributed on the machines from table �.�. A bash script is written to
automate benchmarking remotely with a range of di�erent settings. During the bench-
marks the configuration files are altered using sed and then re-distributed to the replicas
and clients before the next benchmark is run. This way behaviour with di�erent batching
behaviour, agreement protocol and client numbers can be explored programmatically. A
python script, using matplotlib and numpy, is used to automatically generate plots from
the output of the benchmark bash script.

Amount CPU EPC Size Bandwidth Memory
� Intel Xeon E-����G ��.�MiB �Gbps ��GB
� Intel Xeon E�-���� v� ��.�MiB �Gbps ��GB
� Intel Core i�-���� ��.�MiB �Gbps ��GB

Table �.�.: Systems used for distributed benchmarks

The general process includes using ssh to start an instance of T����� on one of the
replicas. After giving the replicas a few seconds to initialize and establish connections
between them the clients are started on the remaining machines. We use threading to
achieve higher client numbers than we have physical hosts. The benchmarks are designed
to not fill the clients with too large loads, to ensure that they are not the bottleneck of the
system. The clients are split evenly across the remaining machines. To benchmark the
performance of S����BFT we both use minimal benchmark applications as well as the
real-world YCSB benchmark to compare against PBFT [��].

�.�.�. Benchmark Applications

Figure �.� and figure �.� show the performance of a benchmark application. The bench-
mark application essentially performs no-ops after each request has been ordered. A batch
is issued after at most ��� requests, after ���ms have elapsed or if the replica is otherwise
idling. These limits are configurable in a configuration file. We run these benchmarks
with di�erent numbers of clients. The error bars show one standard deviation of the data
across at least �� runs.

��

By varying the number of clients we explore the performance of the replicas at di�erent
amounts of load. Especially with request batching it is expected that larger client numbers
will make better use of the network bandwidth.

Figure �.�.: Comparison of S����BFT’s local benchmark performance with and without request
batching enabled.

Figure �.� shows a benchmark with all replicas and clients running locally on a single
machine. On the one hand, this mostly eliminates the network speed as a variable, but
increases the load on the machine dramatically. The performance is bottlenecked by ei-
ther the CPU speed or the memory bandwidth, as the distributed benchmark of figure �.�
performs better at higher client counts.
The performance di�erence, both in rounds-per-second (RPS) and average message la-

tency, between batching and non-batching is shown. The di�erence is dramatic, as a batch
of requests can be processed almost instantly, nomatter the size. This would scale further,
and is only limited on the network speeds and the memory bandwidths of the replicas.
However, this shows that the preparation enclave, especially the leader, is able to create

�.�. D���������� B��������� ��

Figure �.�.: Comparison of S����BFT’s distributed benchmark performance with and without re-
quest batching enabled.

a batch and distribute the requests inside it e�ciently. Between � and �� clients there
is little di�erence between batched and non-batched configurations. This means that so
few requests are issued that each request batch only contains one request. With more
clients the number of requests per batch go up quickly and the batched configuration
outperforms non-batching in every way. Because more requests get processed the average
latency is lower too. The number of clients this system can operate with is technically lim-
ited by the number of allowed open connections. Clients and replicas maintain open TCP
connections to each other at all times. The system at large correctly and quickly orders
the batch while keeping a track of the contained requests. Over the runtime of ��s each,
these benchmarks include all types of normal-case behaviour, including checkpointing.

The biggest load on the system, during these benchmarks, is right at the beginning. As
all the clients are started at the same time and send their requests right away, the leader
has to receive, parse and propose the incoming requests quickly. Because each client waits

��

for a response before sending another, after a short while the requests come in batches.
If S����BFT is configured to use request batching, the load follows the size of the request
batches. Otherwise, the load is still distributed after some time, as new requests are only
issued as pending requests are completed. Either way, the load is amortized after the
initial spike of requests.

Figure �.�.: Comparison of PBFT and S����BFT in the benchmark application.

The figure �.� shows the comparison between PBFT and S����BFT with and without
request batching enabled. The shown metrics are reported by the benchmark application
client. Request and response sizes are configured to be identical. In the request batched
benchmarks both PBFT and S����BFT exhibit the same behaviour around ��� clients. At
this amount of load the latency and RPS fluctuate as not all batches are always full, but
start to impact the performance positively. The exact number of clients at which batches

�.�. D���������� B��������� ��

are created is dependent on the complexity of the protocol. As batches are created early if
the replica is otherwise idling. This can lead to a system which could be sped up by not
batching faster. Usually, using the benchmark application, the systemwill see a cyclic load,
due to the way clients behave. One surprising result is that PBFT increases performance
without batching at higher client numbers.

Figure �.�.: Relative RPS performance of PBFT over S����BFT

The relative performance of PBFT over S����BFT is shown in figure �.�. For low client
numbers this performance fluctuates wildly as the e�ciency of batching is dependent
on the replica speed and a�ect the overall performance. With more than approximately
��� clients the relative performance of PBFT stabilizes at close to 5.5⇥ that of S����BFT.
PBFT’s performance advantage at lower client number is explained by the overhead of
ECalls and OCalls. As the client number rises and batches are more likely to be full the
ECall cost per request drops quickly as the protocol orders the request batch instead.
S����BFT’s performance bottleneck at high client numbers is not the ordering phase but
sending the replies. By ordering batches of requests, the overhead that ECalls and OCalls
add per request diminishes. This is due to all the additional work that has to be done
to send replies from the enclave, compared to PBFT. Whereas PBFT can construct, seri-
alize and send the reply directly, the execution compartment has to construct the reply,
construct an OCall batch and serialize to perform the OCall. On the untrusted side of
S����BFT the OCall is deserialized, interpreted and each reply itself is serialized and sent
over the network. This additional work per reply is what makes the performance di�er-
ence at large client numbers.

��

�.�.�. YCSB Evaluation
The YCSB program suite is a open-source set of tools for benchmarking cloud serving
systems [��]. It generates workloads based on a specification to test systems for di�erent
access and usage patterns. The order and distribution of read and write operations can
be changed to simulate real-world and worst-case access frequencies. Because our KVS
implementation lives entirely in enclavememory access times are expected to be identical
for di�erent keys in any order. Therefore, we only examine a single representative example
workload with ��% reads and ��% writes after the initialization of ���� entries.

Figure �.�.: YCSB benchmark results for PBFT and S����BFT with YCSB default workload “a”.

For access frequencies the benchmark in figure �.� uses the zipfian distribution. This
distribution makes some records extremely popular and most other records unlikely to
be accessed. After inserting data in bulk, read and update requests are sent to the BFT
system. When compiling the execution enclave, the maximum size of the heap, which
is used for data storage in this application, can be customized. In the figure �.�, we can
see that S����BFT performs only slightly worse than the PBFT implementation. At this
amount of load on the ordering algorithm the main di�erence is most likely caused by
the ECall and OCall performance cost.
The figure �.� shows the performance of S����BFT and PBFT for di�erent read per-

centages. The remaining operations are update operations for records inserted before the
benchmark started. The plots show a slight performance advantage for PBFT, however,
both protocols seem to follow the same gradient. This can be explained by the ECall and
OCall overhead.

�.�. D���������� B��������� ��

Figure �.�.: YCSB benchmark results for read percentage sweep using PBFT and S����BFT with �
clients and zipfian distribution

�. Related Work
The realization that agreement protocols’ rounds and phases allow for isolation is not
entirely new. However, we present a new approach to use TEEs to isolate BFT proto-
cols with the goal of increasing resilience and robustness. Lamport [��] already logically
separates agreement participants into clients, proposers, acceptors and learners. Past re-
search has explored many options to use separation to gain performance and scalability,
or use trusted hardware to gain safety. Recent work has used TEEs to create hybridmodels
which use weaker fault models to increase performance and scalability. This is in contrast
to S����BFT which assumes the TEE can exhibit Byzantine faults. Yet S����BFT still is
able to use the separation to increase safety and resilience.

�.�. Physical Separation
A physical split within an agreement protocol is already usually done between the clients
and the replicas. Replicas are only logically separated into representing proposers, accep-
tors (agreement) and learners (execution). Lamport [��] describes a system in which each
replica is a server containing all participants. The proposer role is special, as a single pro-
poser is distinguished as the leader. But even splitting agreement across more machines
intuitive, as the message passing phases can be distributed across the network, spread-
ing the load of agreement on even more machines. Traditionally, distributing the work
of a single replica across multiple machines, however, does not increase safety or fault
tolerance. Under the right circumstances increasing members will increase performance,
provided the protocol has good scalability. Building and maintaining more machines is
also costly, especially if large numbers of faults need to be tolerated. The risk with scaling
to more networked participants is that the additional network communication overhead
increases latency and reduces throughput. Commonly for BFT the number of participants
also needs to be increased to tolerate more faults. Our approach achieves compartmen-
talization and tolerates more faults without increasing the number of hosts while also
making each replica more resilient.

Separating Agreement from Execution

Yin et al. [��] show that separating the agreement operations with the execution environ-
ment physically achieves similar results to ours. The agreement layers themselves are
less isolated than in our model, instead, the agreement protocol and execution hosts are
protected by the network topology and firewalls. The isolated clusters can communicate
e�ciently and by using trusted boundaries they also achieve higher resilience. Theirmain

��

benefit is the gained confidentiality, and reduced replication cost of execution environ-
ments. The confidentiality gain is founded on an optimization which requires a firewall,
which presents a single point of failure, that our protocol avoids.

MultiPaxos

Whittaker et al. [��] present MultiPaxos, a compartmentalized high-performance Paxos.
They make use of the fact that crash-tolerant consensus only requires f + 1 proposer
and 2 f + 1 acceptor compartments. Their work includes many variants and optimization
strategies to gain performance and scalability from their flexible compartmentalization
strategy. Like in S����BFT, compartmentalization is considered a technique, and not a
single protocol. MultiPaxos, however, is not just splitting Paxos, it restructures it into
di�erent amounts of proposers, proxy leaders, acceptors and replicas. They use compart-
mentalization to gain performance. S����BFT on the other hand uses compartmentaliza-
tion to gain safety and confidentiality. Starting froma conventional non-compartmentalized
BFT protocol, S����BFT only requires fencing existing code for compartmentalization.
This leaves S����BFT possibly with more compartments than MultiPaxos’ compartmen-
talization technique.

PigPaxos

Charapko, Ailijiang, and Demirbas [�] alter MultiPaxos and add a piggybacking scheme to
reduce communication overhead. This increases scalability and throughput of PigPaxos
by introducing relay nodes. These relay nodes also present an approach that uses splitting
of responsibilities as an improvement to BFT protocols. However, this is done to increase
performance and not safety as in our case.

Tiered Distributed Systems

With the goal to improve performance, not safety, another way to achieve compartmen-
talization is by tiering the agreement as shown by Baldoni, Marchetti, and Tucci Piergio-
vanni [�]. Their three-tiered asynchronous distributed system moves part of the ordering
step onto a mid-tier between clients and replicas. S����BFT places all compartments of
a replica physically on the replica. The tiered approach instead places nodes closer to the
clients. Because of the communication rounds in S����BFT, our compartments benefit
from being close to each other, more than the client would benefit from a single compart-
ment being closer to it.

�.�. T������H������� ��

�.�. Trusted Hardware
With the availability of general purpose processors supporting TEEs hybrid protocols be-
come feasible. Past systems achieve similar safety qualities as crash-fault tolerant proto-
cols by moving some parts of the protocol into a TEE. The hybrid fault models assume
that TEEs can only fail by crashing. This allows protocols to make more assumptions and
use the gained trust to increase performance and scalability.

TrInc: Trusted Counter

Levin et al. [��] use a similar approach to S����BFT, creating a small TCB. Their versa-
tile trusted counter compartment prevents equivocation, making it applicable in several
applications to stop faulty untrusted side’s worst case behaviour. The main di�erence be-
tween TrInc and S����BFT is that our fault model allows for compromised TEEs. How-
ever, one advantage of TrInc is that the TCB can be smaller as it only needs to sign mes-
sages andmaintain a counter. S����BFT, however, places safety-critical functions into the
TEE and gains more resilience than TrInc because of it.

MinBFT

Veronese et al. [��] improved on previous work requiring a Trusted Timely Computing
Base (TTCB) for hybrid protocols. MinBFT uses trusted counters, like TrInc, to assign
verifiable sequence numbers. Veronese et al. [��] use the tamperproof certificate of the
TEE-signed sequence number to remove equivocation. This allows all replicas to assume
that all other replicas receiving a message with the same sequence number have received
the exact samemessage. By eliminating equivocation they reduce the number of necessary
replicas to 2 f + 1 instead of PBFT’s 3 f + 1. Because replicas cannot send inconsistent
messages an entire communication round can be eliminated compared to classical PBFT
[��, ��], providing lower latency. Which means they achieve the theoretical minimum
number of communication steps. Similarly to TrInc, MinBFT requires the the trusted
counter does not become Byzantine. A crash-fault in the counter implies a crash-fault in
the replica. The main di�erence to S����BFT is that we tolerate faults in the TEE and,
therefore, use a stronger fault model and use TEEs to gain resilience.

Hybster

Behl, Distler, and Kapitza [�] present a hybrid state-machine replication protocol with ex-
tremely high performance. Through a highly parallel software design they achieve before
unseen throughput, even on moderate machines. Similar to S����BFT the Hybster pro-
tocol uses the Intel SGX platform as a TEE. They reduce the number of required replicas
to 2 f + 1 by using TEEs for the agreement process. Other than preexisting hybrid proto-
cols Hybster was also formally verified. The main di�erence to S����BFT, other than the

��

compartmentalization, is that the execution is not protected by the TEE. Similar to other
hybrid protocols, the TEE is used to gain performance and scalability, instead of safety
and confidentiality.

CheapBFT

The CheapBFT protocol by Kapitza et al. [��] drastically reduces the required amount of
replicas. By using a TEE to eliminate equivocation CheapBFT only requires f + 1 replicas
to agree on and execute a client’s request. The TEE performs a similar task as a trusted
counter, implemented as a Counter Assignment Service in Hardware (CASH) subsystem
on an FPGA. The reduction from 2 f + 1 to f + 1 required replicas is achieved by a in-
ternal CheapTiny protocol. While FPGA’s are not as commonly available and a�ordable,
the possibility to build a high-performance TEE without trusting a vendor, like Intel, is
powerful.

�. Conclusion
Agreement algorithms are present in a distributed cloud or decentralized structure to
maintain state acrossmultiplemachines. Together with permissioned blockchains, which
can use BFT protocols for the ordering of transactions, the interest in resilient BFT pro-
tocols will continue to grow. To make use of cloud provider’s infrastructure some form
of TEE need to be used for these applications. In future these systems will work with
more and more sensitive data. There are incentives for bad actors to target these BFT sys-
tems, which means deployments will have to be protected against Byzantine faults. Using
TEEs, a layer of protection against common attacks on software systems can be added, but
to gain resilience and be prepared for novel attacks compartmentalization and diversifi-
cation is unavoidable. Deploying library operating system solutions like Graphene-SGX
[��] provide a simple starting point to place software systems into a TEE. These library OS
systems are, however, less resilient than compartmentalized systems. We show that with
minimal changes to existing protocols, compartmentalized variants can be created which
allow for altered fault models. The fact that TEEs sometimes have weaknesses bugs or
exploits leading to Byzantine behaviour, reflects the real world better than those of some
hybrid models. Protecting sensitive data in TEE will require the TEEs to be designed to
be resilient, as some attacks are known. To achieve the safest and most resilient BFT pro-
tocol, future work will have to formulate more precise fault models and measurements of
attack surfaces and their possible impacts. The biggest problem is to meaningfully mea-
sure the size of the TCB and likelihood and extend of faults within the individual TEEs.

Compartmentalizing PBFT is straight-forward and increases resilience in our stronger
fault model. Our evaluations show that using TEEs and compartmentalization under the
right circumstances provides great resilience for safety and confidentiality at relatively
small cost. As pointed out by related work the overhead which is responsible for the per-
formance di�erence might be avoidable by hardware and firmware improvements [��].

Using modern tools and environments, like T�����, the agreement framework written
in the Rust programming language, and Rust SGX SDKs designing and implementing re-
silient replicated systems has become easier than ever. The presented S����BFTmethod
and example PBFT variant show that converting an agreement protocol into a compart-
mentalized version is possible through a well-structured process. The encountered prob-
lems and observed bottlenecks are possible to overcome, either by further software devel-
opment or hardware improvements. By adding more traditional and modern agreement
protocols and modules to the T����� framework a more comprehensive and represen-
tative comparison of di�erent approaches will be possible. Examinations of other BFT
protocols and their compartmentalized variants will help inform a stronger fault model

�� �. C���������

to be used in the future. Depending on the protocol, one might be able to increase scal-
ability by not requiring every compartment to be present on every replica as there is no
special trust between local compartments.
Future work can increase robustness further by updating used technologies to newer,

more hardened versions. FPGAs have been used to speed up computation in a separate
customhardware environment for Byzantine agreement in the hybrid protocol CheapBFT
[��]. However, for the use in S����BFT they lack attestation and cryptographically secure
memory. To gain the performance advantages FPGAs can provide to compartmentalized
BFT future FPGA platforms would need to support more TEE features. FPGA-based plat-
forms may be able to avoid the cost of ECalls and OCalls. A mixed approach could be
followed as well [��]. Removing the requirement to trust Intel might be advantageous in
certain applications. Even the untrusted code could be further hardened, by using new
and upcoming features like the memfd_secret() system call [��] or deploying entirely in-
side VMs or containers. Diversification in future work could includemixing di�erent TEE
providers in a single replicated system. A formal verification of the S����BFTmethod or
compartmentalized PBFT would also provide additional confidence in their properties.

Bibliography
[�] Marcos K. Aguilera et al. Microsecond Consensus for Microsecond Applications. ����.

arXiv: 2010.06288 [cs.DC].

[�] Apache. Rust SGX SDK. https://github.com/apache/incubator- teaclave-
sgx-sdk. ����. ���: https://github.com/apache/incubator-teaclave-sgx-
sdk/tree/c2698dc2685f8dcd9550086c62077bceff15ded0.

[�] Apache. SipHasher SGX SDK Documentation. https://dingelish.github.io/sgx_
tstd/sgx_tstd/hash/struct.SipHasher.html. ����. ���: https://dingelish.
github.io/sgx_tstd/sgx_tstd/hash/struct.SipHasher.html.

[�] R. Baldoni, C. Marchetti, and S. Tucci Piergiovanni. “Asynchronous active replica-
tion in three-tier distributed systems”. In: ���� Pacific Rim International Symposium
on Dependable Computing, ����. Proceedings. ����, pp. ��–��. ���: 10.1109/PRDC.
2002.1185614.

[�] Johannes Behl, Tobias Distler, and Rüdiger Kapitza. “Hybrids on Steroids: SGX-
Based High Performance BFT”. In: Proceedings of the Twelfth European Conference on
Computer Systems. EuroSys ’��. Belgrade, Serbia: Association for Computing Machin-
ery, ����, pp. ���–���. ����: �������������. ���: 10.1145/3064176.3064213. ���:
https://doi.org/10.1145/3064176.3064213.

[�] Jo Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with
Transient Out-of-Order Execution”. In: ��th USENIX Security Symposium (USENIX
Security ��). Baltimore, MD: USENIX Association, Aug. ����, ���–����. ����: ���-�-
������-��-�. ���: https://www.usenix.org/conference/usenixsecurity18/
presentation/bulck.

[�] Miguel Castro and Barbara Liskov. “Authenticated Byzantine Fault Tolerance With-
out Public-Key Cryptography”. In: (Aug. ����).

[�] Miguel Castro and Barbara Liskov. “Practical Byzantine Fault Tolerance and Proac-
tive Recovery”. In: ACM Trans. Comput. Syst. ��.� (Nov. ����), pp. ���–���. ����: ����-
����. ���: 10.1145/571637.571640. ���: http://doi.acm.org/10.1145/571637.
571640.

[�] Aleksey Charapko, Ailidani Ailijiang, and Murat Demirbas. “PigPaxos: Devouring
the Communication Bottlenecks in Distributed Consensus”. In: Proceedings of the
���� International Conference on Management of Data. New York, NY, USA: Association
for Computing Machinery, ����, pp. ���–���. ����: �������������. ���: https://
doi.org/10.1145/3448016.3452834.

https://arxiv.org/abs/2010.06288
https://github.com/apache/incubator-teaclave-sgx-sdk
https://github.com/apache/incubator-teaclave-sgx-sdk
https://github.com/apache/incubator-teaclave-sgx-sdk/tree/c2698dc2685f8dcd9550086c62077bceff15ded0
https://github.com/apache/incubator-teaclave-sgx-sdk/tree/c2698dc2685f8dcd9550086c62077bceff15ded0
https://dingelish.github.io/sgx_tstd/sgx_tstd/hash/struct.SipHasher.html
https://dingelish.github.io/sgx_tstd/sgx_tstd/hash/struct.SipHasher.html
https://dingelish.github.io/sgx_tstd/sgx_tstd/hash/struct.SipHasher.html
https://dingelish.github.io/sgx_tstd/sgx_tstd/hash/struct.SipHasher.html
https://doi.org/10.1109/PRDC.2002.1185614
https://doi.org/10.1109/PRDC.2002.1185614
https://doi.org/10.1145/3064176.3064213
https://doi.org/10.1145/3064176.3064213
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://doi.org/10.1145/571637.571640
http://doi.acm.org/10.1145/571637.571640
http://doi.acm.org/10.1145/571637.571640
https://doi.org/10.1145/3448016.3452834
https://doi.org/10.1145/3448016.3452834

�� B�����������

[��] Allen Clement et al. “Making Byzantine Fault Tolerant Systems Tolerate Byzantine
Faults”. In: Proceedings of the �th USENIX Symposium on Networked Systems Design and
Implementation. NSDI’��. Boston,Massachusetts: USENIXAssociation, ����, pp. ���–
���.

[��] ConsenSys. Quorum Blockchain Service. ����. ���: https://consensys.net/QBS.

[��] Brian F. Cooper et al. “Benchmarking Cloud Serving Systems with YCSB”. In: Pro-
ceedings of the �st ACM Symposium on Cloud Computing. SoCC ’��. Indianapolis, Indi-
ana, USA: Association for ComputingMachinery, ����, pp. ���–���. ����: �������������.
���: 10.1145/1807128.1807152. ���: https://doi.org/10.1145/1807128.
1807152.

[��] Jonathan Corbet. “memfd_secret() in �.��”. In: (Aug. ����). ���: https://lwn.net/
Articles/865256/.

[��] Victor Costan and Srinivas Devadas. Intel SGX Explained. Cryptology ePrint Archive,
Report ����/���. https://eprint.iacr.org/2016/086. ����.

[��] The Rust Project Developers. How Rust is Tilde’s Competitive Advantage. ����. ���:
https://prev.rust-lang.org/pdfs/Rust-Tilde-Whitepaper.pdf.

[��] The Rust Project Developers.Mid-level Itermediate Representation Interpreter. ����.���:
https://github.com/rust-lang/miri.

[��] The Rust Project Developers. The rustc book. ���: https://doc.rust-lang.org/
rustc/lints/index.html.

[��] DHL. DHL AND ACCENTURE UNLOCK THE POWER OF BLOCKCHAIN IN LO-
GISTICS. ����. ���: https://www.dhl.com/global-en/home/press/press-
archive/2018/dhl-and-accenture-unlock-the-power-of-blockchain-in-

logistics.html.

[��] Jim Guilford, David Cote, and Vinodh Gopa. Fast SHA��� Implementations on In-
tel® Architecture Processors. ���: https://www.intel.com/content/dam/www/
public/us/en/documents/white-papers/fast-sha512-implementations-ia-

processors-paper.pdf.

[��] PatrickHunt et al. “ZooKeeper:Wait-Free Coordination for Internet-Scale Systems”.
In: Proceedings of the ���� USENIX Conference on USENIX Annual Technical Conference.
USENIXATC’��. Boston, MA: USENIX Association, ����, p. ��.

[��] IBM. Blockchain in retail solutions. ����. ���: https://www.ibm.com/blockchain/
industries/retail.

[��] Intel. Intel® Software Guard Extensions (Intel SGX) Developer Guide V�.�. https : / /
download.01.org/intel-sgx/sgx-linux/2.8/docs/Intel_SGX_Developer_

Guide.pdf. ����. ���: https://download.01.org/intel-sgx/sgx-linux/2.8/
docs/Intel_SGX_Developer_Guide.pdf.

https://consensys.net/QBS
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://lwn.net/Articles/865256/
https://lwn.net/Articles/865256/
https://eprint.iacr.org/2016/086
https://prev.rust-lang.org/pdfs/Rust-Tilde-Whitepaper.pdf
https://github.com/rust-lang/miri
https://doc.rust-lang.org/rustc/lints/index.html
https://doc.rust-lang.org/rustc/lints/index.html
https://www.dhl.com/global-en/home/press/press-archive/2018/dhl-and-accenture-unlock-the-power-of-blockchain-in-logistics.html
https://www.dhl.com/global-en/home/press/press-archive/2018/dhl-and-accenture-unlock-the-power-of-blockchain-in-logistics.html
https://www.dhl.com/global-en/home/press/press-archive/2018/dhl-and-accenture-unlock-the-power-of-blockchain-in-logistics.html
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-sha512-implementations-ia-processors-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-sha512-implementations-ia-processors-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-sha512-implementations-ia-processors-paper.pdf
https://www.ibm.com/blockchain/industries/retail
https://www.ibm.com/blockchain/industries/retail
https://download.01.org/intel-sgx/sgx-linux/2.8/docs/Intel_SGX_Developer_Guide.pdf
https://download.01.org/intel-sgx/sgx-linux/2.8/docs/Intel_SGX_Developer_Guide.pdf
https://download.01.org/intel-sgx/sgx-linux/2.8/docs/Intel_SGX_Developer_Guide.pdf
https://download.01.org/intel-sgx/sgx-linux/2.8/docs/Intel_SGX_Developer_Guide.pdf
https://download.01.org/intel-sgx/sgx-linux/2.8/docs/Intel_SGX_Developer_Guide.pdf

B����������� ��

[��] Intel. Intel® Software Guard Extensions (Intel SGX) Developer Reference V�.�. https://
download.01.org/intel- sgx/linux- 2.4/docs/Intel_SGX_Developer_

Reference_Linux_2.4_Open_Source.pdf. ����. ���: https://download.01.
org/intel-sgx/linux-2.4/docs/Intel_SGX_Developer_Reference_Linux_2.

4_Open_Source.pdf.

[��] Johnson et al. Supporting SGX on Multi-Socket Platforms. ���: https://www.intel.
com/content/www/us/en/architecture-and-technology/software-guard-

extensions/supporting-sgx-on-multi-socket-platforms.html.

[��] Ralf Jung et al. “Stacked Borrows: An Aliasing Model for Rust”. In: Proc. ACM Pro-
gram. Lang. �.POPL (Dec. ����). ���: 10.1145/3371109. ���: https://doi.org/
10.1145/3371109.

[��] Rüdiger Kapitza et al. “CheapBFT: Resource-E�cient Byzantine Fault Tolerance”.
In: Proceedings of the �th ACM European Conference on Computer Systems. EuroSys ’��.
Bern, Switzerland: Association for Computing Machinery, ����, pp. ���–���. ����:
�������������. ���: 10.1145/2168836.2168866. ���: https://doi.org/10.
1145/2168836.2168866.

[��] Steve Klabnik and Carol Nichols. Rust Book: Error Handling. ����. ���: https://doc.
rust-lang.org/book/ch09-00-error-handling.html.

[��] Steve Klabnik and Carol Nichols. The Rust Programming Language. USA: No Starch
Press, ����. ����: ����������. ���: https://doc.rust-lang.org/book/.

[��] Marios Kogias and Edouard Bugnion. “HovercRaft: Achieving Scalability and Fault-
Tolerance for Microsecond-Scale Datacenter Services”. In: Proceedings of the Fifteenth
European Conference on Computer Systems. EuroSys ’��. Heraklion, Greece: Association
for Computing Machinery, ����. ����: �������������. ���: 10 . 1145 / 3342195 .
3387545. ���: https://doi.org/10.1145/3342195.3387545.

[��] Tsung-TingKuo,Hyeoneui Kim, andLucilaOhno-Machado. “Blockchain distributed
ledger technologies for biomedical and health care applications”. In: Journal of the
American Medical Informatics Association �� (Nov. ����), pp. ����–����. ���: 10.1093/
jamia/ocx068.

[��] Leslie Lamport. “Paxos Made Simple”. In: ACM SIGACT News (Distributed Computing
Column) ��, � (Whole Number ���, December ����) (Dec. ����), pp. ��–��. ���: https:
//www.microsoft.com/en-us/research/publication/paxos-made-simple/.

[��] Leslie Lamport, Robert Shostak, andMarshall Pease. “The Byzantine generals prob-
lem”. In:ACMTransactions on Programming Languages and Systems (TOPLAS) �.� (����),
pp. ���–���.

https://download.01.org/intel-sgx/linux-2.4/docs/Intel_SGX_Developer_Reference_Linux_2.4_Open_Source.pdf
https://download.01.org/intel-sgx/linux-2.4/docs/Intel_SGX_Developer_Reference_Linux_2.4_Open_Source.pdf
https://download.01.org/intel-sgx/linux-2.4/docs/Intel_SGX_Developer_Reference_Linux_2.4_Open_Source.pdf
https://download.01.org/intel-sgx/linux-2.4/docs/Intel_SGX_Developer_Reference_Linux_2.4_Open_Source.pdf
https://download.01.org/intel-sgx/linux-2.4/docs/Intel_SGX_Developer_Reference_Linux_2.4_Open_Source.pdf
https://download.01.org/intel-sgx/linux-2.4/docs/Intel_SGX_Developer_Reference_Linux_2.4_Open_Source.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://doi.org/10.1145/3371109
https://doi.org/10.1145/3371109
https://doi.org/10.1145/3371109
https://doi.org/10.1145/2168836.2168866
https://doi.org/10.1145/2168836.2168866
https://doi.org/10.1145/2168836.2168866
https://doc.rust-lang.org/book/ch09-00-error-handling.html
https://doc.rust-lang.org/book/ch09-00-error-handling.html
https://doc.rust-lang.org/book/
https://doi.org/10.1145/3342195.3387545
https://doi.org/10.1145/3342195.3387545
https://doi.org/10.1145/3342195.3387545
https://doi.org/10.1093/jamia/ocx068
https://doi.org/10.1093/jamia/ocx068
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/

�� B�����������

[��] Dave Levin et al. “TrInc: Small Trusted Hardware for Large Distributed Systems”.
In: �th USENIX Symposium on Networked Systems Design and Implementation (NSDI ��).
Boston, MA: USENIX Association, Apr. ����. ���: https://www.usenix.org/
conference/nsdi-09/trinc-small-trusted-hardware-large-distributed-

systems.

[��] InesMessadi et al. “Poster Abstract: A Fast and Secure key-value Service UsingHard-
ware Enclaves”. In: Proceedings of the ��th International Middleware Conference (Posters).
ACM. ����, pp. �–��.

[��] Azure Microsoft. Azure Blockchain Service. ����. ���: https://azure.microsoft.
com/en-us/services/blockchain-service/.

[��] Hyunyoung Oh et al. “TRUSTORE: Side-Channel Resistant Storage for SGX Us-
ing Intel Hybrid CPU-FPGA”. In: Proceedings of the ���� ACM SIGSAC Conference on
Computer and Communications Security. CCS ’��. Virtual Event, USA: Association for
Computing Machinery, ����, pp. ����–����. ����: �������������. ���: 10.1145/
3372297.3417265. ���: https://doi.org/10.1145/3372297.3417265.

[��] C. Pu et al. “A Specialization Toolkit to Increase the Diversity of Operating Systems”.
In: ����.

[��] Vincent Rahli et al. “Velisarios: Byzantine Fault-Tolerant Protocols Powered by Coq”.
In: Programming Languages and Systems. Ed. by Amal Ahmed. Cham: Springer Inter-
national Publishing, ����, pp. ���–���. ����: ���-�-���-�����-�.

[��] Signe Rüsch, Kai Bleeke, and Rüdiger Kapitza. “Themis: An E�cient and Memory-
Safe BFT Framework in Rust: Research Statement”. In: Proceedings of the �rdWorkshop
on Scalable and Resilient Infrastructures for Distributed Ledgers. SERIAL ’��. Davis, CA,
USA: Association for Computing Machinery, ����, pp. �–��. ����: �������������.
���: 10.1145/3366611.3368144. ���: https://doi.org/10.1145/3366611.
3368144.

[��] Fred B. Schneider. “Implementing Fault-Tolerant Services Using the State Machine
Approach: A Tutorial”. In: ACM Comput. Surv. ��.� (Dec. ����), pp. ���–���. ����:
����-����. ���: 10.1145/98163.98167. ���: https://doi.org/10.1145/98163.
98167.

[��] Michael Schwarz et al. “ZombieLoad: Cross-Privilege-Boundary Data Sampling”. In:
Proceedings of the ���� ACM SIGSAC Conference on Computer and Communications Secu-
rity. CCS ’��. London,UnitedKingdom: Association for ComputingMachinery, ����,
pp. ���–���. ����: �������������. ���: 10.1145/3319535.3354252. ���: https:
//doi.org/10.1145/3319535.3354252.

[��] Hongliang Tian et al. “Switchless Calls Made Practical in Intel SGX”. In: Proceed-
ings of the �rd Workshop on System Software for Trusted Execution. SysTEX ’��. Toronto,
Canada: Association for ComputingMachinery, ����, pp. ��–��. ����: �������������.
���: 10.1145/3268935.3268942. ���: https://doi.org/10.1145/3268935.
3268942.

https://www.usenix.org/conference/nsdi-09/trinc-small-trusted-hardware-large-distributed-systems
https://www.usenix.org/conference/nsdi-09/trinc-small-trusted-hardware-large-distributed-systems
https://www.usenix.org/conference/nsdi-09/trinc-small-trusted-hardware-large-distributed-systems
https://azure.microsoft.com/en-us/services/blockchain-service/
https://azure.microsoft.com/en-us/services/blockchain-service/
https://doi.org/10.1145/3372297.3417265
https://doi.org/10.1145/3372297.3417265
https://doi.org/10.1145/3372297.3417265
https://doi.org/10.1145/3366611.3368144
https://doi.org/10.1145/3366611.3368144
https://doi.org/10.1145/3366611.3368144
https://doi.org/10.1145/98163.98167
https://doi.org/10.1145/98163.98167
https://doi.org/10.1145/98163.98167
https://doi.org/10.1145/3319535.3354252
https://doi.org/10.1145/3319535.3354252
https://doi.org/10.1145/3319535.3354252
https://doi.org/10.1145/3268935.3268942
https://doi.org/10.1145/3268935.3268942
https://doi.org/10.1145/3268935.3268942

B����������� ��

[��] Chia-che Tsai, Donald E. Porter, and Mona Vij. “Graphene-SGX: A Practical Library
OS for Unmodified Applications on SGX”. In: ���� USENIX Annual Technical Confer-
ence (USENIX ATC ��). Santa Clara, CA: USENIX Association, July ����, pp. ���–���.
����: ���-�-������-��-�. ���: https://www.usenix.org/conference/atc17/
technical-sessions/presentation/tsai.

[��] Giuliana Veronese et al. “E�cient Byzantine Fault-Tolerance”. In: Computers, IEEE
Transactions on �� (Jan. ����), pp. ��–��. ���: 10.1109/TC.2011.221.

[��] Nico Weichbrodt et al. “AsyncShock: Exploiting Synchronisation Bugs in Intel SGX
Enclaves”. In: (����). ���: 10 . 24355 / dbbs . 084 - 201611011011 - 0. ���: http :
//www.digibib.tu-bs.de/?docid=00064029.

[��] Michael Whittaker et al. Scaling Replicated State Machines with Compartmentalization.
Dec. ����.

[��] Chen Yang et al. “Review on Variant Consensus Algorithms Based on PBFT”. In: Ar-
tificial Intelligence and Security. Ed. by Xingming Sun, Jinwei Wang, and Elisa Bertino.
Singapore: Springer Singapore, ����, pp. ��–��. ����: ���-���-��-����-�.

[��] Juncheng Yang, Yao Yue, and Rashmi Vinayak. A large scale analysis of hundreds of in-
memory cache clusters at Twitter. ���: https://www.usenix.org/sites/default/
files/conference/protected-files/osdi20_slides_yang.pdf.

[��] Jian Yin et al. “Separating Agreement from Execution for Byzantine Fault Tolerant
Services”. In: SIGOPS Oper. Syst. Rev. ��.� (Oct. ����), pp. ���–���. ����: ����-����.
���: 10.1145/1165389.945470. ���: https://doi.org/10.1145/1165389.
945470.

https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://doi.org/10.1109/TC.2011.221
https://doi.org/10.24355/dbbs.084-201611011011-0
http://www.digibib.tu-bs.de/?docid=00064029
http://www.digibib.tu-bs.de/?docid=00064029
https://www.usenix.org/sites/default/files/conference/protected-files/osdi20_slides_yang.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/osdi20_slides_yang.pdf
https://doi.org/10.1145/1165389.945470
https://doi.org/10.1145/1165389.945470
https://doi.org/10.1145/1165389.945470

A. Contents of the CD
The CD included with the thesis has the following contents:

Source code for S����BFT in T����� including git history. Packaged as a git bundle
it includes all references to browse the implementation process.

Thesis as PDF including thesis code as LATEX project.

Benchmark data used to generate plots in the thesis.

All this data can also be found as attachments to the most recent release on this GitLab
repository: https://gitlab.ibr.cs.tu-bs.de/ds-thesis/2021-ma-markus-becker-
bft-split-multiple-enclaves

https://gitlab.ibr.cs.tu-bs.de/ds-thesis/2021-ma-markus-becker-bft-split-multiple-enclaves
https://gitlab.ibr.cs.tu-bs.de/ds-thesis/2021-ma-markus-becker-bft-split-multiple-enclaves

	List of Figures
	List of Tables
	Introduction
	Thesis outline

	Background
	Goals of Agreement
	State Machine Replication

	Byzantine Fault Tolerance
	Fault Model
	BFT Stages
	Equivocation
	Application
	Deployment environment
	Practical Byzantine Fault Tolerance

	Robustness
	Intel Software Guard Extensions
	Themis BFT Framework
	Agreement Protocol Interface
	Rust Programming Language

	Design
	System Model
	SplitBFT Protocol
	Normal-Case Operation
	Compartments
	View Changes
	Garbage Collection
	Encryption and Signatures
	Fault analysis

	Compartment Broker
	Compartment Interfaces
	Asynchronous Operation

	Application Compartments

	Implementation
	Themis BFT Framework
	Benchmark Application
	Key-Value Store Application

	Dependency Versioning
	Code Reuse
	Diversification
	ECall & OCall Interface
	Broker Implementation
	Enclave Implementation
	Protocol Messages
	Message Log

	Continous Integration
	Problems with the Themis framework
	Problems with the Teaclave SGX SDK

	Evaluation
	Hashing Algorithm
	Trusted Computing Base Size
	Distributed Benchmarks
	Benchmark Applications
	YCSB Evaluation

	Related Work
	Physical Separation
	Trusted Hardware

	Conclusion
	Bibliography
	Contents of the CD

