Technische

% Universitat

¥ Braunschweig

Bachelor’s Thesis

Low Latency Byzantine
Agreement using RDMA

Markus Becker

August 8, 2019

Institute of Operating Systems and Computer Networks
Prof. Dr. Riidiger Kapitza

Supervisors:
Ines Messadi, M. Sc.
Signe Riisch, M. Sc.

Statement of Originality

This thesis has been performed independently with the support of my supervisor/s. To
the best of the author’s knowledge, this thesis contains no material previously published
or written by another person except where due reference is made in the text.

Braunschweig, August 8, 2019

Abstract

Increased computational power and need for distributed services put the bottleneck of
modern networked applications on the network layer. Among other applications, which
would benefit from greater bandwidth and lower latency, Byzantine Fault Tolerance algo-
rithms could gain from a more performant communication protocol because they com-
monly exhibit high network utilization. Improved performance of consensus protocols
could increase their deployment in the future. New technologies oftering performance
increases require additional work to utilize their advantages. Remote Direct Memory Ac-
cess is a communication protocol offering extraordinarily low latency and high bandwidth
compared to traditional network protocols. To use it efficiently it is necessary to imple-
ment memory management and flow control on the application layer. We implement a
copy free memory management structure and receive window flow control scheme in the
Reptor Byzantine Fault Tolerance framework using the Hybster protocol.

INSTITUT FUR BETRIEBSSYSTEME
UND RECHNERVERBUND

Technische Proif. Dr.-kng, L. Woll | Praf, Dr, R. Kapitza | Prof, Dr. 5. Fokobe

Universitat

Braunschweig

Mr. Markus Becker
Matriculation Number: 4808448
Email-Address: markus.becker@tu-braunschweig.de

Course of Studies: Bachelor Informatik

Task Description of the Bachelor’s Thesis
Low Latency Byzantine Agreement using RDMA

assigned to Mr. Markus Becker.
Motivation

Byzantine-fault tolerant (BFT) protocols allow mitigating a wide range of failures, thereby
ensuring the availability and resiliency of a system. Yet, such protocols are considered
costly in terms of message complexity and resource usage. The cost is to a large part
caused by their high consensus latency on TCP/IP. A fitting solution is to use remote
direct memory access (RDMA) to decrease this communication overhead.

RDMA is a technology that enables direct data movement between the memory of re-
mote computers in a zero-copy manner, without the support of the operating system.
Consequently, it helps to reduce the CPU load and to decrease the network overhead,
which promises accelerated BFT systems. However, applying RDMA is challenging,
since its performance is highly related to many low-level details associated with its re-
sources and operation details, resulting in a whole redesign of a system.

The previous work RUBIN" is a solution to take advantage of RDMA counterparts with-
out the need to rewrite the communication stack of Java-based BFT frameworks. How-
ever, it does not provide a communication buffer management scheme and RDMA-
tailored flow control to ensure the efficient use of resources in a BFT setting.

Task Description

This thesis will focus on implementing an RDMA-tailored flow control and a buffer
management scheme in the Reptor BFT protocol?, relying on the existing RUBIN ap-

proach. In particular, the thesis needs to address the following steps:

« Analysis of the buffer management scheme of Reptor and the existing RDMA-
based library

« Implement an RDMA flow control allowing replicas to exchange the status of the

available resources

« Implement a zero-copy buffer management scheme into Reptor

*Riisch, Signe, et al. "Towards Low-Latency Byzantine Agreement Protocols Using RDMA." Proceedings
of the 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Work-
shops.|EEE, 2018.

2Behl, Johannes, et al. "Consensus-oriented parallelization: How to earn your first million." Proceedings
of the 16th Annual Middleware Conference. ACM, 2015.

Page 1 of 2

Technische Universitat
Braunschweig

Institut fiir Betriebssysteme und
Rechnerverbund

Verteilte Systeme

Miihlenpfordtstr. 23
38106 Braunschweig
Deutschland

Prof. Dr.
Ridiger Kapitza

Tel. +49(0) 531 391-3294
Fax +49(0) 531 391-5936

kapitza@ibr.cs.tu-bs.de
www.ibr.cs.tu-bs.de

Date: May 1st, 2019

Technische Universitat Braunschweig
Institut fiir Betriebssysteme und Rechnerverbund
Verteilte Systeme

« Optional: implement additional optimizations, for example inline data

« Evaluation of the implemented extensions via a set of microbenchmarks regard-

ing throughput and latency

— Optional: evaluation via a replicated key/value store, or coordination service in terms of latency and through-
put

General Remarks

The duration is 3 months.

The remarks regarding student theses at the IBR have to be considered.
(seewww.ibr.cs.tu-bs.de/kb/arbeiten.html).

Task description and supervision

Prof. Dr. Riidiger Kapitza:

M. Sc. Signe Riisch:

M. Sc. Ines Messadi:

Thesis work

Markus Becker:

Page 2 of 2

Contents

IL.__Introduction
L1 _Thesis outlind

’. B O 0
R.1. Remote Direct Memory Access o v i v i it i i it e
R.11. T/ODbuffering i i i it e e e e
R.1.2. Requirements
P13, DiSNIJavalibrary
P14 Connectiond o v i ittt it ittt e e e e e e e e e e e
P.2. Byzantine Fault Tolerancd
21 Failnremadel e
P27 BFTSTAZET -« o o o v o e e e e e e e e e e e e
R.2.3. Application e e
R.24. Deployment environment{

D Reptor

231 Choice of framework

...........................

R.3.2. layoutof Repton e
PATRUBTN . . . ot e
4.1, JavaNIO Selecton1 e
R4.2. Implementation
3. Desig
Bl Memory management v v vttt e e e e e e e e e e e e e e e e e e
B.1.1. Smallest unit of memory management
p.1l.2. Management structures for memory
B2 FlowContrall e
B.2.1. Necessityof FlowControl
B.2.2. Existing Flow Control,
B.2.3. Requirements of new Flow Control
B.2.4. Explorationofsolutiond
B.2.5. Scope of implementation

B.3. Security Analysis e e e e

N

O 0 9 9 N i i n

CONTENTS

A. Tmplementation 33
A.1. DiSNIUpgradd e e e e e e e e e 33
d.1.1. Existing implementation 33

B.1.2. Porting Reptor to DiSNIversion2.0. 33

B2, ZeroBuffer Copy o i e e e e e e e e e 34
@#.2.1. Implemented memory management structure§ 35

A.2.2. Extending ByteBuffer 36

423 Buffer Solutionl 36

B3, Recetve WINAOW v v v v i e 39
A.3.1. Flow Controlalgorithm/. 42

1.7 =, 44
BAT. Expectationd e 44

BS DNSCISSION v v s e 44
g.5.1. Availabilityof RNICs 45

B52. RDMAforconsensud, 46
B.__Fvaluafion 47
b.l. JUnit benchmarky e 47

B2 _Connecfionfesi o 49
b.3. System benchmark 51
b.4. RDMA optimizationd. e 53
b.4.1. Doorbell batching 53

b4.2. Messageinlining 54
B._Related Work 57
BT TDARE o e e e e e e e 57
BZTFaRM e e e e e e e e e e e e e e 57
b.3. RDMAiforAgreemenf 58
b4, Hidden costof RDMA e 58
Z_Conclusion 59
Bibliography 61
A_Canients of the CDD 65

B. JUnit benchmark 67

List of Figures

R.1. Layered structureof Reptorl 13
B.1. Simplified class diagram for memory management 19
B.2. Network view with RDMA sockets for replicas with bufier ringg 20
B3 Tafettimeofbufferd 21
B.4. Flow control worst case sequence diagram| 27
B.5. Specific tlow control sequence diagram 29
@¢.1. Complete class diagram of memory management 40
d.2. Complete sequence diagram showing tlow control schemd. 42
@.3. Diagram showing CPU utilization bottleneck 45
b.. _Rawconnectiontestresults 49
b.2. Benchmark stability at difierent bufiersizes 50
b.3. Benchmark result plots for RDMA baseline and new implementation . .. 52
b.4. Benchmark result plots for T'CP baseline and new implementation/. 53
b.>. Measuring performance 1mpact of inlining messages using system bench-{

List of Tables

¢.l. Memory management class structure and inheritance mode]

b.l. Synthetic benchmarkresults

1 Introduction

With an increased need for low latency, large bandwidth transfers, both in academic and
commercial applications, networking protocols focussing on performance become in-
credibly important. Network-based services are widespread, distributed machines run-
ning copies of the same software communicating to share resources or enable faster re-
sponses to users are common practice. These distributed systems are vulnerable to mali-
cious attacks. This can cause their networked nodes to exhibit arbitrary behaviour which
they need to be resilient against. One type of algorithm, that gives distributed systems re-
silience against nodes experiencing this kind of fault, are Byzantine Fault Tolerance (BFT)
protocols. Those protocols often rely on many messages transferred over the network and
are highly performance-critical [5]. Thus, efforts have been made to optimize the differ-
ent BFT protocols themselves, or the framework they are built on top of, employing better
parallelization or similar solutions [3, I4]. However, attempts to increase the bandwidth
and lower latency of the network layer are less common. Most BFT frameworks are based
on traditional network communication protocols like TCP/IP however, newer technolo-
gies are available, offering higher transfer speeds and lower latency.

One fairly recent technology, enabling faster network speeds, is Remote Direct Memory
Access (RDMA). It allows networked computers to directly access remote memory to read
and write and can be used to increase the performance of BFT protocols further. Some
work has already been done applying RDMA for consensus protocols [23], however, few are
as general as the RUBIN framework [26] made for the Java-based BFT framework Reptor
[3]. Fully utilizing the advantages of RDMA requires the restructuring and optimizing of
applications [8]. It is possible, that with further enhancements, the RUBIN implementa-
tion for RDMA in Reptor can achieve higher throughput of messages and result in overall
faster processing of incoming requests. The most important missing feature is flow con-
trol, necessary to fully utilize RDMA without encountering data races destabilizing the
system, as RDMA does not provide flow control like the Transmission Control Protocol
(TCP) does [I3].

The reason a technology like RDMA can be used to increase the performance of dis-
tributed systems is that their networked nodes need to frequently share data and send
messages to each other [26, 8, 4]. Swapping out communication protocols is no trivial
task. In case of TCP, a network protocol is built on the transport layer to achieve many
features on top of the Internet Protocol (IP), which RDMA connections can support out
of the box. However, due to the Direct Memory Access (DMA) aspect of RDMA, develop-

1.1. THESIS OUTLINE

ers making use of this technology need to be aware of its constraints and limitations. To
ensure the stability of the network communication of an application using RDMA it is
necessary to implement a form of flow control.

The speciality of RDMA is that it alleviates load from the CPU by removing the need
to copying data between buffers from user space to the memory area mapped to the net-
work card [I8]. This reduces overall overhead on the network protocol, as long as it can
be seamlessly implemented. Not involving the CPU in data copies means it can perform
other operations. Using RDMA is only reasonable if the overhead needed to make use of’
it efficiently is less than the overhead it saves. In fact, initializing a RDMA connection
costs more than creating a TCP socket [8]. To begin communication over RDMA, both
parties have to set up a comparably complex structure on their end to be able to receive
and send data [B]. Before any data can be received or sent, both parties also have to have
memory committed for those purposes. The RDMA data transfer itself can be initiated
by the CPU in one system and is then completed by the network interfaces without the
involvement of any further CPU operations [I8]. There are different notification models
available to further increase the effective bandwidth and lower the latency. Each additional
optimization, that can be enabled by RDMA, needs to be handled by the application, mak-
ing specific RDMA optimized applications practical, which better utilize the performance
available through RDMA. The process of developing these applications, or porting an ex-
isting application to make use of RDMA, is, however, no trivial process.

Instead of developing a completely new BFT protocol or framework designed with
RDMA in mind, which has been done before in protocols like DARE [23], the aim of this
thesis is to extend the communication buffer management scheme and tailor a new flow
control mechanism for use with RDMA in Reptor. This is to ensure efficient use of re-
sources in a BFT setting. RDMA is also an ideal optimization for Reptor [], because Reptor
is bottlenecked by the network [4].

The state of the recent implementation of RUBIN [26] in Reptor led to a working Java
NIO Selector prototype with several further optimization and safeties opportunities [6,
20]. It is necessary to implement a new form of structured memory management and
proper flow control. The goal is to keep the RDMA specific implementation to the lowest
layer possible. It also keeps the same design goals as RUBIN. This includes the ability
to be placed into any Java application, using the same Selector interface, and enable it to
make use of the advantages of RDMA. Additionally to furthering RUBINs development,
there are also several optimizations for RDMA available which need to be propagated into
Reptor’s codebase.

1.1. Thesis outline
This thesis is structured in the following way:
m Chapter 2 introduces the background necessary for this thesis. This includes the

technology used in RDMA, the fundamentals of BFT protocols, as well as the soft-
ware basis this thesis builds on top of.

1. INTRODUCTION

ChapterB shows the analysis of the existing structure and outlines necessary changes
to RUBIN and Reptor. We design the new memory management as well as the flow
control scheme, describing the choices taken throughout the process.

Chapter 8 covers the implementation process in more detail. Shown are the exact
memory management structures and their interplay as well as a worked example of’
the flow control algorithm.

Chapter H evaluates the new implementation in different settings through different
scopes of benchmarks.

Chapter i mentions related work in this field.

Chapter [concludes this thesis, arguing the portability of RDMA and its state of
implementation in Reptor.

3

2 Background

In this chapter, the technology and resources, necessary to pursue the aim of this thesis,
are mentioned and explained. Most importantly the RDMA protocol. The basis of the
implementation is the BFT framework Reptor [3] written in Java. Reptor has recently been
patched and is already able to communicate using the RDMA protocol by Riisch et al. [26].

2.1. Remote Direct Memory Access

RDMA is a message-oriented, zero-copy asynchronous communication protocol similar
in function to DMA found in modern computers [I8]. DMA enables transferring data
without the CPU actively moving data around, freeing the CPU to work on non-I/O tasks.
RDMA can be used to extend this paradigm to networked machines. Applying RDMA re-
quires additional hardware [19, I4]. That is why it is not commonly used by end-users,
instead, RDMA sees deployment in data centres and research facilities. RDMA both en-
ables writing applications that need low latency and high bandwidth [I¥]. RDMA also
requires additional work to make use of its advantages efficiently in software [8]. Tradi-
tionally the CPU is informed about the completion of DMA operations by an interrupt.
RDMA offers similar functionality. Instead of consuming a larger amount of system re-
sources to process a TCP/IP network stack, RDMA has been developed to reduce the load
on the CPU and introduce as little latency as possible.

2.1.1. 1/O buffering

In traditional communication protocols, like TCP [24], the CPU copies the data to be trans-
mitted at least once, from the application memory into a temporary network buffer. The
temporary network buffer, then, is consumed by the TCP/IP stack, which constructs a TCP
packet using the data in the buffer, and initiates the transmit process in the network card
employing the DMA controller. This means, an interrupt is sent to the CPU once the op-
eration is completed, optionally freeing the temporary network bufter. These additional
steps to sending a message, invisible to the application in user space, add overhead with
each packet sent. RDMA, on the other hand, allows the user space application to directly
write to and read from the buffers used by the network interface, without any necessary
additional buffer copy steps.

Performance advantage of RDMA

RDMA aims to circumvent these bufter copy steps and provide a form of remote DMA,
optionally also providing a notification on completion of the write or read event, anal-
ogous to the interrupt of DMA. To optimize performance, applications can be designed
using RDMA to perform no buffer copies. This reduces load on the CPU to copy data

2.1. REMOTE DIRECT MEMORY ACCESS

from one memory location to another. However, patching this behaviour in an existing
application is not a straightforward process [8]. As doing so requires writing the data to
be sent directly into the buffer used to send it.

At its most performant, RDMA can theoretically support transfer speeds from 10 Gb/s
up to 56 Gb/s per port [I8]. To fully utilize RDMA superior transfer speeds the user space
application needs to be implemented in a specific way. The applications taking full ad-
vantage of RDMA have to be well optimized themselves, otherwise, the bandwidth will not
present the bottleneck to warrant RDMA. Though the low latency of RDMA can be a fac-
tor in choosing RDMA too. But applications also have to be able to produce and consume
large amounts of data in short periods of time.

It is, therefore, clear that the application needs to get data it wants to transmit written
into an RDMA buffer as fast as possible. As it is not necessary to involve the operating
system to copy data into device buffers any more.

Copy free memory management

The reason for trying to avoid additional buffer allocation and buffer copies, especially in
garbage collected languages like Java, is the high performance cost of those operations.
Depending on the implementation of the Java Virtual Machine (JVM), which runs the
bytecode of any program written in a JVM language, garbage collection is rather costly [2].
To be able to collect unused references and free memory used by buffers, the number of
active references to an object have to be counted. Different implementations for garbage
collection either "stop the world" and analyse the memory used by a process to make deci-
sions, others are iterative or even mixed [2]. This can lead to reduced throughput, delaying
actions or even cause timeouts [2]. Allocating additional buffers, therefore, does not neatly
replace the memory freed by the buffer just unreferenced. To free or reuse memory the JVM
has to detect the last use of'a reference first and then deallocate the memory. This means
adding to the extra work needed to be done, unused memory can remain occupied by the
JVM for some time.

However, the garbage collection algorithms are still seeing development promising
higher performance, especially as they become more and more common in modern pro-
gramming languages.

There are two ways to avoid all buffer copies using RDMA, differing in the order of
operations. Either a buffer is allocated, then becomes a buffer RDMA can use and is then
written to directly by the application, or a buffer the application has allocated and written
tois then registered to be used with RDMA. The second option is rather easy to implement
for an already existing system using traditional communication methods. This is because
it is the traditional way to handle I/O buffering. Following that approach, all that has
changed compared to TCP, from the data flow perspective, is that the temporary network
buffer has moved into the user-accessible part of main memory. It suffers from worse
latency [8] and higher memory usage, especially in garbage-collected languages [2]. The
increased latency comes from the additional registration and de-registration that has to
be done for each message buffer.

2. BACKGROUND

The reason the first approach, registering bufters for use with RDMA, and then filling
and posting them, is advantageous, is because the registration and de-registration only
happen once at the start and the end of the runtime of the application respectively. This
means as long as the application can write the data it wants to transmit directly into the
buffers used for communication, the additional overhead can be made up for, as shown
in the study by Frey and Alonso [8].

The way to implement a system, which allows reuse of buffers in that way, without
increasing the memory footprint immensely, is through memory management. Memory
management allows an application to prescribe and regulate the way in which the usage
of its memory is structured.

2.1.2. Requirements

To handle RDMA network traffic a special network setup is required. There are dedi-
cated network interface controllers (NICs), which implement the RDMA interface, com-
monly using the physical InfiniBand connector. The RDMA network interface controllers
(RNICs) does not have to use the physical InfiniBand connector, as there are implementa-
tions like RDMA over Converged Ethernet (RoCE) and iWARP which make use of existing
(Ethernet) networks [19, I8, I6].

The way applications in user space interact with the RNICs is through an abstract inter-
face called Verbs [I8]. An instance of the Verbs interface implementation in Java is called
jVerbs [27].

2.1.3. DiSNI Java library

Higher-level support of RDMA in Java sees current development [6]. One open-source
library Direct Storage and Networking Interface (DiSNI) is actively updated and provides
an interface for RDMA more fitting the Java paradigm and language model. It is written
mostly in Java with a C interface between the Java functions and the operating system or
the RNIC respectively. There exist two kinds of publicly accessible interfaces in DiSNI to
extend with one’s own functionality. They are each meant for either the server or client
component [G]. DiSNI is released under the Apache License (Version 2.0). Building DiSNI
only requires very few dependencies managed by Apache Maven, though it has a slightly
uncommon build process, as one needs to build its Java and C library parts separately.
According to its GitHub repository it runs on Java version 8 or higher [6]. We can make
use of it because the codebase, we intend to use it with, is written in Java 8.

2.1.4. Connections

As a network protocol with additional guarantees, and possibly improved speed over TCP/IP,
additional steps and preparations are necessary to initiate communication using RDMA.
Any active RDMA connection resembles a one-to-one channel between two peers. Both
of them have to allocate resources to support the connection. Initially a Queue Pair (QP)
is prepared [I8]. The QP does not have to be unique on the peer’s side, and there can be
multiple active QPs per connection acting as a filter or decoder. The QP is the container

7

2.2. BYZANTINE FAULT TOLERANCE

for messages, ingoing and outgoing. It is also important for efficient communication to
ensure that the QP does not enter an unrecoverable state. Such a state can, for example, be
reached when an incoming message cannot be successfully received because the QP was
not prepared to receive or the message cannot be handled for other reasons.

Common terminology

The way in which a QP is prepared for send and receive actions is by posting a so-called
Work Request (WR). A WR consists of descriptors of at least one Memory Region (MR),
which act similar to DMA, and can be read and written to without involvement of the
CPU by the RNIC. The MRs used for these operations need to be specially prepared, in
a process called pinning. Pinning is necessary to ensure that the memory representing
the MR is accessible without causing a page fault. The MR can be accessed by use of a
generated cryptographic key [16]. A key is also used to identify the MR to the remote peers
[I8]. A WR can consist of multiple MRs, thus a WR is actually associated with Scatter or
Gather Elements (SGE), which allow for combining, and sectioning of, Memory Regions
[18].

Operations

Different kinds of WR operations provide different kinds of notifications, aside from the
direction of data transfer. The most fundamental operations are WRITE and READ. Both
of which either directly write to or read from a region of memory on the remote side of the
RDMA connection. That host is not notified and the entire data transfer is invisible to the
application running, on both hosts. For example, after preparing for READ operations,
entailing sending a key and memory location identification, the remote can read from
that memory location at will, without causing any notifications locally. The WRITE op-
eration works analogously, allowing the participant to write at arbitrary times, into parts
of the shared memory locations, without causing notification about the operation on the
other side. These operations are called one-sided. There are however more complex two-
sided operations. The two-sided SEND operation is useful, because it allows polling a
Work Completion Queue (WCQ) for Work Completion (WC) events on the receivers side
[18, P5]. The execution of both kinds of operations are very efficient and fast compared
to traditional network protocols, however, with the added complexity and overhead, the
two-sided operations do perform worse than the one-side operations. Most importantly
though, the operations themselves are far faster than the time it takes to establish and set
up a connection. In certain applications, sending data to multiple peers only once, other
network protocols, like TCP, can offer a lower time-to-first-byte, with 0.1 ms compared to
202 ms using RDMA [8].

2.2. Byzantine Fault Tolerance

Byzantine Fault Tolerance describes a property of a distributed system, as it is found in
distributed and networked applications, in which the system is required to reach a con-
sensus even though a certain number of participants are allowed to behave incorrectly.

2. BACKGROUND

Behaving incorrectly in BFT protocols is defined as the participant experiencing a Byzan-
tine fault to be able to act in arbitrary ways. This extends the fault model further than
just crash tolerance, as a malicious faulty member could pretend to behave correctly or lie
about the information it has received from others. BFT is one of the most general fault
models because of that, making Byzantine faults one of the hardest type to tolerate. The
Byzantine Agreement Problem originated from the Byzantine Generals Problem by Lam-
port et al. [T15]. Broadly, the Generals Problem is about communication participants, who
cannot trust each other or their communication channel, who try to agree on a decision
by sharing their opinion. They, importantly, have to be able to form a majority of loyal
participants. The general assumption about their communication channel is, in practice,
that sent messages do arrive, but can be arbitrarily delayed.

2.2.1. Failure model

There are two different failure models used in consensus protocols. Crash failures are
moderately dangerous for a system. A participant experiencing a crash failure will not take
partin any further communication, as their computation has halted. The cause of this can
be a software bug or hardware failure. There are similar symptoms in distributed systems,
when the network is experiencing an outage or messages sent are verifiably tampered with.
The Byzantine fault model is more general. As Byzantine failures allow a participant to
behave arbitrarily, it is a useful fault model for computer systems, which can be hacked
or interfered with. Faulty behaviour includes, for example, sending different messages to
different participants, delaying communications or lying about information concerning
others.

To eliminate the possibility of bugs or incorrect behaviour of a correctly behaving par-
ticipant, and provide a basis to define a formal protocol on, it is assumed that they execute
deterministic state machines to reach their decision given a certain input. For the sake
of the BFT protocol, all participants are then initialized with the identical state of the
state machine. This process is called state machine replication, the participants, in a BFT
consensus protocol, are called replicas.

BFT protocols are characterised by the number of failures they can tolerate and still
reach a consensus within the correctly behaving participants. Assuming the consensus
is reached by the majority, the total number of members n necessary, given the number
of members who exhibit Byzantine failures f, can be expressed as a function of f. For
the general Byzantine Problem the condition n > 3f + 1 holds [I5]. This formula states a
minimum number of replicas necessary to take part in the BFT communication to tolerate
f failures. This means, in a system of four participants at most one Byzantine failure can
be tolerated and the correct consensus will be reached, or the other way around, ifa system
has to be able to tolerate two faults at least seven replicas have to be deployed.

9

10

2.2. BYZANTINE FAULT TOLERANCE

2.2.2. BFT stages

The formula is reached with the above assumptions, correctly functioning state machines
will reach the same decision given an input, and they need to be able to share their de-
cision. If they can form a majority, then a consensus can be reached. If a replica is not
faulty, then it will also send the correct response, and behave correctly throughout all the
BFT stages.

Ordering

The communication in BFT protocols often occurs in two rounds. First, the agreement
stage. After a request from a client is received, the request is broadcast across all replicas
and the order in which the replicas are processing the outstanding requests is agreed upon
by all replicas. This is the ordering part of BFT protocols. Then the requests are executed
in the so-called execution stage and each replica sends the result ofits computation back
to the client.

Checkpointing

In addition to ordering and execution of requests, two additional functions of BFT proto-
cols are necessary. They are checkpointing and view-changes. Checkpointing is required
because the network is often assumed to be unreliable [4], but also has other uses. Check-
pointing allows a form of recovery from network-based failures, which are either random
or have been otherwise resolved. Checkpointing also provides a perfect opportunity for
garbage collection as it marks a clean cut in the protocol at which no references or mem-
ory of old data is necessary [4]. This involves the replicas sharing all the necessary data for
new replicas to join in, and also creates a state, which allows recovered replicas to continue
participating.

View-change

Another point of failure, which endangers the reaching of a consensus, is which replica
is asked by the clients. Instead of contacting a random one, the client often refers to a
publicly known leader. The leader is one of the replicas which receives the requests from
clients and initiates the ordering process. During the execution of the BFT protocol, the
replicas can request to change the leader if they suspect the leader to be faulty. Once
enough requests to announce a new leader have been collected by a replica it will assume
the leader position has been changed. This is called a view-change. The order in which
the leader position rotates is usually predetermined.

2.2.3. Application

From the view of the client, one message is sent containing a request to the replicas. After
the message has been processed, the client will receive a number of responses, one from
each replica. At some point, the client decides that it received enough responses and
finds the majority of the responses. It considers that majority to be the correct result. The
condition n > 3f + 1, then, means that more than % of the distributed system behave

2. BACKGROUND

correctly. The additional correct replica is necessary in case the client misses the last
response from a correctly behaving replica. When the client performs the majority voting
process on the responses, it will still be able to find a majority of correct responses.

This procedure is more complex than finding a consensus when the type of fault the
system needs to tolerate is limited to crash faults, as those are generally characterized by
n > 2f + 1, requiring a lot fewer resources when the expected number of faulty replicas
is high.

For fully utilizing RDMA, we do also have to assume relative proximity between the
replicas. This to some extent reduces the overall safety of the system as physical access
to one might make it more likely to be able to physically access another. As well as the
likelihood of faults caused by environmental effects. The distance of the replicas to the
client is less important.

2.2.4. Deployment environment

It is also assumed that the replicas differ in all ways that enable contamination from one
faulty replica to the other functioning replicas, thus byzantine faults occur one-by-one.
In practice, Byzantine fault-tolerant distributed systems are contacted by outside clients
communicating with the leader replica to send his request, the replicas of the distributed
application then communicate following the BET protocol, and responses are usually sent
from each replica directly to the client. Leaving the client to handle the voting on its own.

2.3. Reptor

Reptor is a framework written in Java, which has recently been enabled to communicate
using RDMA to solve issues in BFT systems [26]. This thesis aims to extend the func-
tionality of Reptor’s RDMA network layer implementation. To enable the use of RDMA a
software project called RUBIN has been patched into Reptor, closely following the imple-
mentation of the Java NIO Selector.

2.3.1. Choice of framework

The reason for extending Reptor with RDMA, is that Reptor’s maximum performance
depends heavily on the amount of bandwidth available to it [26, 20, B]. It also benefits
from low latency and a low memory footprint [26] and the gain in available processor
time, if a communication protocol is applied, which alleviates the load on the CPU for
sending a message.

Apart from the advantages Reptor would gain from RDMA, Reptor already is a good
target to implement further optimizations on. The usual optimization target of BFT al-
gorithms is the protocol itself. This means either reducing the necessary amount of com-
munication rounds or simplifying the protocol in other ways. With the implementation
of PBFT [5] and Hybster [4] in Reptor performing well [3], making use of the paralleliza-
tion scheme COP [4]. Therefore, further optimizations can be reasonably targeted at the
network layer.

11

12

2.3. REPTOR

2.3.2. Layout of Reptor

Reptor is structured in a way to run efficiently on multi-core processors. The implemen-
tation of the framework is rather complex, allowing for the stacking of layers as part of
its configuration to change its behaviour and type of connection to peers. This stack of
layers is shown in figure I1. To the outside, Reptor provides an interface to build any
application to make use of'its layered structure. The way the layers of Reptor interact is
similar to the way data is wrapped or unwrapped and interpreted when moving down or
up the conceptual Open Systems Interconnection (OSI) layers.

2. BACKGROUND 13

Inbound Stage Outbound Stage

Topmost Layer

Connector

Connection

Inbound Stage

Outbound Stage

Connector

Connection GGGG———

Inbound Stage | ... Outbound Stage

_________________________________ S

(o]
Inbound Stage

d
S|

Send Messages to upper Layers I

Network

Figure 2.1.: Structure of Reptor consisting of layers, incoming and outgoing sockets as well as links
connecting them [V6, B]

In an abstracted view on the semantic layers important to this thesis the stack of layers
making up Reptor can be summarised beginning from the top. Most abstract is the imple-
mentation of'a BFT protocol, built on top of methods provided by the Reptor framework.
Those methods represent connective layers of Reptor, both wrapping and unwrapping, as
well as, converting data from one format to another and storing it for transfer in differ-
ent buffers and encodings, until the data reaches the network layer. The specifics of the
network layer are oblivious to any protocol implementation and, for the most part, are
considered a blind sink or source of data.

This is also mirrored in Reptor’s structuring and use of data classes. Many of its se-
rialised data representations are already designated to flow up through the layers of the
stack as a network source buffer, or be transferred down the layers as a network sink buffer.
For multiple reasons, inside of Reptor, caused by its design, it is helpful to think of each
side of the stack (figure [2]) to be source and sink of data respectively.

Important for the focus of this thesis are the existing memory structures in Reptor. First
of all the layers in the Reptor stack are connected to their direct neighbours by so-called
links. The links handle the data flow and hand down references to bufters when sending
data and up the stack for receiving data from the network. There are different kinds of’
links. Those which bufter and resize the messages can be more general, whereas links
which are unbuffered need to be fine-tuned to the layers they connect.

14

2.4. RUBIN

The implementation of the network layer making use of RDMA used in this thesis is
called RUBIN and provided by Riisch et al. [26].

2.4. RUBIN

RUBIN is a software project aiming to make use of RDMA communication in the shape
of'a Java NIO Selector. As such, it is no extension of the Java NIO Selector, but rather a
copy, intended to replace the Selector in the runtime, to more or less seamlessly replace
the default communication model.

The goal is to not only enable Reptor to make use of the developed Selector implemen-
tation, but instead to be able to deploy the Selector into any Java application to enable
RDMA communication. Especially BFT frameworks written in Java are considered a pos-
sible use case.

2.4.1. Java NIO Selector

The way the Java NIO Selector, and in turn RUBIN, works is by registering targets with
one management object, called the Selector [22, PG]. The targets, also called channels,
then can report capabilities. The application using the Selector is expected to query the
Selector for the kind of capability it wants to access. This commonly is either for reading
or writing. The kind of keys used as capabilities can be arbitrarily extended. The Selector
then returns a reference to the first channel which reported to be able to perform the
wanted capability.

Selectors have been a part of Java since Java version 1.4 [22]. They essentially multiplex
between an arbitrary number of channels, but with each selection, additional information
about that channels capabilities are conveyed by their selection key [22]. Selectors offer a
very performant implementation and structure to handle multiple connections.

Another useful feature of Selectors in Java is that they support both blocking (i.e. syn-
chronous) and non-blocking (i.e. asynchronous) selection of channels. This is extremely
useful in concurrent high-performance use cases. The blocking calls can either block for
as long as it takes to acquire a selection key, or provide a timeout after which the control
flow can continue. The asynchronous calls always return immediately and either provide
a selection key or return a null value.

More advanced control flow behaviour is also possible to implement through wakeup
methods, which wake up blocking threads. The Selector is also concurrency safe, for the
most part [22].

2.4.2. Implementation

There already exists the necessary glue code to make use of RUBIN within Reptor and
multiple different test applications and unit tests have been written too. Reptor was de-
veloped with the Java NIO Selector in mind. With RUBIN being able to take the place of
the Java NIO Selector, Reptor can use RUBIN instead.

2. BACKGROUND 15

RUBIN intentionally mirrors the implementation and behaviour of the Java NIO Se-
lector so that Reptor, in particular, does not need to be changed to function. Instead of
using TCP, default Java sockets, or even any part of the Java Network Interface, the new
Selector extends the DiSNI library to use RDMA endpoints. Bypassing of the Java Network
Interface offers a great performance benefit, as it does not even need to be initialized.

The use of the DiSNI library in Reptor is a rather idiomatic Java extension of its inter-
faces. With a differing philosophy behind Java sockets and TCP compared to RDMA the
actual usage of those endpoints differs from how they would ideally be used. This is to be
expected as Reptor at large was not designed with RDMA in mind.

3 Design

The main goals of this thesis are to design and implement a copy free send and receive
pattern for the Reptor framework based on the Java NIO Selector implementation already
using RDMA [6] in addition to increasing the stability of the system by revising a better
flow control scheme. This is necessary to avoid QPs entering an unrecoverable error state.
To achieve high throughput and low latency, buffer copies have to be avoided and even
allocations of new buffers have to be reduced []. The time-to-first-byte for RDMA is worse,
compared to similar communication methods, but long-living connections achieve up to
a magnitude higher data transfer rates on average [8, ,], this means reconnecting two
machines, that entered a broken QP state, is also not an option for high-performance
applications.

Targeting optimizations at the network layer is possible because the applications, run-
ning on the frameworks considered in this thesis, are highly optimized and bottlenecked
by the network latency and bandwidth [4, 26]. The domain of many other optimizations
is the protocol running itself or the framework on which the protocol is implemented.
Such an optimization, available for implementation in Reptor, is zero-buffer-copy. Zero-
bufter-copy is especially advantageous in combination with the introduction of RDMA
in the network layer [26, B]. In this context zero-bufter-copy means that throughout the
lifetime of'a message, it is never moved to another region of memory before it is sent.

The current implementation of memory management in Reptor is inefficient, when
data flows through Reptor’s layers, buffer copies are unavoidable in certain cases, which
both slow down the system, as well as, increase the memory footprint of the entire appli-
cation. More important, for the stability of the system, is that there is no guarantee that
received data is not overwritten with another message before it is consumed. This also
extends to sending data. Data, meant to be transmitted, might be overwritten, before it
is physically transmitted. To minimize the risk of those events a large number of bufters
needed to be used. Thus, the data race evident did not break the system immediately, how-
ever, frequent crashes are observable at almost all configurations. Buffer copies were done
intentionally to further minimize the risk of overwriting data. Therefore, Reptor shows
very high memory utilization. This is worsened by the requirement of large buffers being
used, to allow receiving of large messages, as well as small messages, thus, a large amount
of the memory would stay unused and wasted. As a rule of thumb, at its most performant
configuration, the Reptor framework, running Hybster using RUBIN as a network layer,
performed well for up to 11 seconds, after which it is very likely to crash. The crashes are
caused by either a message being overwritten or a flow control failure in which a replica
in the system is not prepared to receive a message being sent by another. As described

18

3.1. MEMORY MANAGEMENT

in chapter), this can happen either when the message is too large, when there was no
receive request posted or if one of the replicas posted more requests than the hardware
supports. This would lead to more replicas crashing than the protocol can tolerate failing
and the system would eventually terminate.

This is why an efficient communication pattern between the replicas needs to be ap-
plied. A new form of memory management has to be implemented to enable full utiliza-
tion of RDMA'’s advantages too.

3.1. Memory management

Because of the pre-existing structure of the Reptor and the BFT protocols built on top
of'it, it is necessary to design new management structures to aid in the implementation
of zero-buffer-copy and an RDMA aware network layer. To minimize the overhead and
amount of code needed to be refactored, the added structures need to be as similar to
the default memory solution in Java as possible, which would allow reusing of existing
code and minimize the risk to introduce additional bugs. However, it will be necessary
to be able to access the introduced designs in a structured and controlled way to enforce
zero-buffer-copy and ensure data safety properties are kept.

3.1.1. Smallest unit of memory management

The fundamental unit of the memory management introduced to Reptor in this thesis
is a Managed Buffer component. Each Managed Buffer is a wrapper for a standard Java
buffer. It is important that some calls have to behave differently to allow zero-buffer-
copy and interaction with RDMA, without major problems. To allow multiple different
implementations and further changes, an abstract API is defined in Reptor that allows for
changes in behaviour while still allowing interoperability with the introduced memory
structures.

The structure present in Reptor to allocate memory is a functional call that can allo-
cate new memory on demand and returns the references to buffers without any further
logic. Replacing this behaviour requires additional management structures. The manage-
ment structures need to be able to create and return references to memory. For ensuring
that buffers are not actively used by two separate parts of the system, uses of Managed
Buffer objects also have to be managed. This can be done simply by counting the num-
ber of currently used references per buffer. The memory management structures also
have to cover the same functionality as the existing implementation, in addition to being
usable in the network layer. The new design also has to establish the necessary proper-
ties needed for use with RDMA. This could also be done with only limited refactoring
by changing the implementation of the functional handle used. A design like that would
be harder to reuse and maintain and would probably be harder to implement and more
prone to bugs. There are also concerns whether a functional interface for memory ac-
cess and management would be sufficient to provide the guarantees which can easily be

3. DESIGN 19

ManagedMemory

T

ManagedRingBuffer

.

ManagedBuffer

ManagedByteBuffer NativeByteBuffer

ByteBulffer

Figure 3.1.: Simplified class diagram showing the classes designed to manage access to memory.

implemented using object-oriented code. It is technically possible to do so, but the size
of'a completely functional implementation would likely outgrow the structural approach
using an object-oriented paradigm.

In conclusion, the smallest unit of the new memory management design is a Managed
Buffer. The Managed Buffer exposes an API identical to the standard Java buffer. To
deploy them in Reptor, it is going to require additional structures built on top of them
to properly replace the current design, and allow for the necessary control over the use of
memory.

3.1.2. Management structures for memory

Even before considering the structure, in which the Managed Buffers need to be stored
and how they are going to be used, the layout of the management structures themselves
needs to be designed. While every message needs at least, ideally exactly, one instance
of a buffer, it is important to note that, we want to be able to use different management
structures for different peers and, more importantly, different structures for transmit and
receive directions. This is because every management structure is going to behave as the
source of buffers for that part of Reptor.

Scope of management structures

The pre-existing implementation enabled almost all layers of the Reptor framework to
allocate memory at will. This allows for the allocation of arbitrarily large buffers, using
a single call to a lambda object, from anywhere in Reptor. To minimize the amount of’
refactoring and changing of behaviour, multiple levels of abstraction on the concept of

20

3.1. MEMORY MANAGEMENT

Replica Replica f Replica

Socket Socket

Socket

Figure 3.2.: Sockets of replicas, each with send and receive buffer rings for each RDMA connection

to any other replica.

memory allocation need to be constructed. The design presented in this thesis calls for
four different levels of abstraction along with their differing scope Bl. These are the Man-
aged Buffers at the bottom and the control structures, called Managed Memory, on top
of the buffers. For use with different Sockets, factories will have to create unique Man-
aged Memory instances. To reduce the memory footprint, the highest level is formed by
Singletons for overviewing the memory allocation process.

The standard Java buffer is to be replaced by the Managed Buffers. They have to allow
writes and reads of the underlying data, as if they need to replace the Java buffers in Reptor.
Importantly, the internal buffer of a Managed Buffer must never be replaced by another.
The internal buffer must not be able to grow and they must not make the internal bufter
accessible by any other way, to provide necessary safeties.

Building on top of the foundation of Managed Buffers, structures can be designed to
cycle through already allocated Managed Buffers and allow Reptor’s layers to access mem-
ory without major changes. These rings of Managed Bufters are the solution to the con-
trolled access to memory. Iterating through a ring of buffers is able to replace the existing
memory management, provided there are enough buffers available and the buffer ring
can count uses of each buffer object. This will require changing the parts of Reptor that
allocate memory and those which consume the data in them, to notify the ring of buffers.
To improve performance and enable zero-buffer-copy, the buffers of the buffer ring also
have to be able to be registered with RDMA, which means they, and their pinned memory
region, have to be able to be linked to each other. This also limits the amount of useful
buffers in any system to be used with RDMA as the hardware, specifically the RNIC, has
an upper limit of posted requests. This can be circumvented by batching in the network
layer. Apart from that, the only limitation to the size of the ring is the memory addressable
by the Java Virtual Machine.

It is preferable to use the buffer ring sequentially, in essence, to minimize occurrences
in which the next buffer in the ring would still be in use while there exist available buffers
further along in the ring. Though this cannot completely be avoided, it can be minimized
by allocating a buffer ring for each consumer and producer. The figure B2 shows this
applied to the network layer. In the network layer, both sending and receiving represent
a consumer and producer, respectively. The aim of this design, and necessary to achieve

3. DESIGN

Runtime Configuration Channel Buffer

MemoryFactory

loop [For each peer]

Memory

loop [For each message |

ManagedBuffer

Runtime Configuration Channel Buffer

Figure 3.3.: Lifetime of buffers.

zero-buffer-copy, is to propagate the use of these buffer rings further up the framework,
Reptor. This lets different buffer rings semantically become sending and receiving bufter
rings, with identical behaviour.

For the use with RDMA, each replica should have its own separate memory source for
receive buffers. Otherwise, multiple channels could post receive requests for the same
buffer without knowing and, thus, overwrite data. There are solutions to circumvent this
problem and use the same memory factory for all peers and still ensure that no two sockets
have access to the same buffer to receive data into. In this thesis, we were able to use the
separated sources of memory for each socket’s receive bufters to do further optimizations.

Memory reuse and safety

The lifetime of a single buffer extends for longer than the lifetime of the message in the
system, as the buffers are kept in a buffer ring. To make sure data in buffers is never
overwritten before it was consumed or is otherwise not useful any more, the references
to the buffers have to be counted. Simply, on obtaining a reference to a buffer a counter
is increased, and after the buffer was used a free call has to be invoked, not asimilar to
languages without garbage collection. This buffer lifetime is shown in figure B3. Once
the buffer is freed, by a user, the counter tallying its usages is decreased. If the counter is
decremented to zero the buffer’s state is also reset to default values so it can be reused as if’
it was just allocated and registered with the RDMA channel. There is no enforcement, in
the code, that prohibits recent owners of memory to continue using it, after they marked
it as freed. This design was chosen to increase performance, as accessing the memory can
be done without authenticating or identifying the user, which would have been required
otherwise. The contents of the freed buffers are not reset, which may have security impli-
cations if parts of the framework are not trusted, for this thesis, however, we assume the
layers of Reptor having access to the buffers are trusted.

21

22

3.1. MEMORY MANAGEMENT

This implementation should keep the memory footprint of the network layer of Reptor
constant, as it can reuse the same buffers over and over again. The protocol on top is still
able to allocate arbitrary amounts of memory. Assuming the protocol does not contain
a memory leak and its memory utilization does not grow arbitrarily large, given that the
system running Reptor with a BFT framework has enough memory available, this memory
management scheme will be sustainable. It could be argued that, exposing Reptor’s new
memory management to applications running on top of Reptor might be advantageous,
for further memory usage optimization.

3. DESIGN 23

3.2. Flow Control

The design of the memory management, described in chapter B, does have some func-
tionality to aid in ensuring that buffers are not incorrectly reused or overwritten. However,
in the network layer of Reptor, changes need to be made to ensure that buffers are freed
in time to be reused. One way to ensure this, is by implementing flow control. Reptor was
not developed with a network layer in mind, which requires an inherently different kind
of flow control, for both send and receive, compared to TCP/IP. RDMA and T'CP both of-
fer reliable connections, but RDMA operates on completely different verbs than TCP does
[18] and requires more setup and initialization [K]. The work required, to enable Reptor
to send and receive data using RDMA, has been done before [26]. RUBIN, however, was
incomplete in terms of flow control and lacked stability, among other features that need
to be designed and implemented to realise its use in a protocol.

3.2.1. Necessity of Flow Control

The fundamental difference, and the reason why RDMA requires additional flow control,
is that the CPU is not involved in the actual data transfer taking place. The RNIC has to be
configured to be able to write arriving data into RAM before such data arrives. The state
of the two peers, taking part in an RDMA connection, is stored in a QP. After the QP is
initialized between the two peers both of them can post send and receive requests. RDMA
also supports more performant direct reads and writes to memory. This thesis will only
make use of the RDMA operations with notifications, which allows the software using
RDMA to be asynchronously notified of completed WRs, both send and receive. To avoid
an unrecoverable QP state, the receiving side of a transaction always has to have a receive
WR posted, with sufficient pinned memory, to successfully receive the data the sender is
providing. The registration of such memory blocks, as well as, the posting of the WRs, is
required to be done by the CPU ahead of time.

Notably, for the sake of optimizations on the receiving end, is that the same WR, describ-
ing the same MR, can be posted multiple times. The limiting factors are that all RNICs
have an upper limit on the amount of queued up WR they can queue on each connection.
They are also limited by the speed at which the software using RDMA can consume and
act upon the arriving data and fulfilled WRs. The maximum amount of data transferred
in a single request is 2 GB per message, but may be limited by other factors [25].

3.2.2. Existing Flow Control

The existing structure in Reptor is employing a Java NIO Selector. This is either the de-
fault Java NIO Selector for the Reptor implementation using TCP, or RUBIN for the Reptor
implementation using RDMA. RUBIN’s Selector acts on the WC events asynchronously
emitted by the RDMA connection [26]. The completed requests have a wr_id used to de-
termine the buffer, which just received the data. The data is then copied into a separate
bufter provided by the Reptor layer above. The buffer copy step was necessary because
RUBIN needed to avoid overwriting received data at all cost. To replenish the posted WR

24

3.2. FLow CONTROL

queue, all receive WRs are posted again, when possible. This is done to minimize the
risk of not having a receive request posted when the peer, sharing the RDMA connec-
tion, wants to send. The exact timings are protocol and implementation-dependent, but,
in this application, the problem arises because one of the participants in the communi-
cation sends messages faster than the receiving end can process and repost the requests.
Thus, applying RDMA in an already existing application can require flow control, not un-
like TCP’s sliding window, in which both parties are aware of the receiving capabilities
and capacities of their peer.

It is clear that, in an application developed with RDMA in mind, with very predictable
data flow and communication, and few and large data chunks, this overhead can be min-
imized or completely resolved, which is when the application of RDMA is most advanta-
geous.

3.2.3. Requirements of new Flow Control

The changes intended to be implemented in this thesis are those necessary to enable stable
communication between peers to avoid entering an unrecoverable QP state. This needs
to be done while adding as little overhead as possible. To keep the code portable, changes
will be limited to the lowest layer, when possible, and change as few methods of the net-
work layer, as possible. As before, the implementation also needs to be interchangeable
with the default Java NIO Selector. Different benchmarks and applications built on top
of Reptor have different configurations concerning the stack of layers, which need to stay
compatible with the new flow control. It is, therefore, important that, the changes made
to any message, or any additional communication, are completely invisible to the layers
above, as they should be able to consider the network layer a sort of black box. Only the
links between the layers should be aware of implementation-specific details.

The baseline exhibits a race condition between the sending peer and the receiving peer.
Notably, those roles change over the lifetime of the RDMA channel, as the protocol using
the Reptor framework can enqueue reads and writes between any replicas in arbitrary or-
der and relative magnitude. It is to be expected that protocols will present asymmetric
behaviour over short periods, in which one peer predominantly enqueues sends and the
other has to be able to receive large amounts of data or numerous messages in succes-
sion. If; at any time, the receiving party is slower at preparing receive requests, then the
sending party can exhaust the QP, and an unrecoverable error state can be reached. This
is the reason why a flow control scheme inspired by the TCP receive window needs to be
realized and implemented. It is not necessary to implement the entire flow control func-
tionality of TCP, for multiple reasons. Our goal is to solve the problem described above,
commonly known as back pressure, we do have guarantees which TCP implementations do
not have, as well as fewer requirements than the entire TCP network stack has to meet.
Most importantly, unlike IP, the reliable connected QP guarantees that each message is
transmitted at most once, without corruption and in order, in a one-to-one cardinality
with another reliable connected QP. There are other Queue Pair modes with fewer guar-
antees and, thus, a lower overhead, they are no reliable connections, which we assume to

3. DESIGN 25

have. All of those guarantees given by the implementation of RDMA are features the TCP
stack has to implement in software, which we do not want to implement in software here
and instead use the faster hardware implementation [I8, 19], that the reliable connection
mode of RDMA provides.

Ideally, any added flow control scheme does not decrease the overall performance of the
system. Also, as this flow control scheme is applied to RDMA, some additional constraints
have to be taken into consideration. First ofall, the hardware responsible for executing
the RDMA operations has limitations which cause a faulty QP state when exceeded. If the
new flow control scheme intends for any batching to occur, then the maximum number of
outstanding and completed WRs queued in the RNIC has to be taken into account. This
means that, if flow control schemes call for higher batch numbers, or allow arbitrarily
large batches, then they cannot be used for this purpose. Similarly, additional logic will
be required, likely to contain some state, which has to be stored in memory of the system
running the application. Assuming this state needs to be uniquely stored for each con-
nection to a replica, then the number of peers a replica needs to connect to, using the flow
control scheme, is limited by the amount of memory available.

3.2.4. Exploration of solutions

There exist very basic mechanisms which can often be used to implement a working flow
control mechanism resolving the problem of back pressure as described in the context of’
TCP. Though simpler to apply than the solution settled on, they come with drawbacks of
their own which makes them inapplicable for this specific problem.

Buffering

The naive solutions to back pressure include the buffering of messages to process and
consume them at a later point, when the constant influx of messages from the sending side
reduces or stops. This only works if enough messages can be buffered to survive the period
of time, the sender is bombarding the receiver with messages, giving this method an upper
bound based on the memory available to the system, as well as the processing power of
the system. If the receiver is not able to process all outstanding buffered messages before
the next period of severe load ensues, the amount of buffered work will pile up and cause
unbounded memory use in the long run. Another reason, buffering cannot be considered
the solution for this problem, is that the other goal outlined in this thesis is achieving
zero-buffer-copy for sending and receiving messages. Buffering could mean keeping a
possibly arbitrary amount of messages in memory. This either will require a very large
memory footprint even when most of the memory is not actively used and just reserved
for peak network traffic times, or a complex adaptive algorithm has to be developed and
implemented.

26

3.2. FLow CONTROL

Dropping

Another often-used solution, to the problem outlined, is the dropping of messages if the
receiving side is not able to process the amount of incoming traffic. There are again mul-
tiple reasons this is not a viable solution in our case. Most importantly, the dropping of
messages through RDMA is only possible in the sense that the framework on top is not
processing the messages, because the network interface controller is programmed to pro-
cess the incoming message without the involvement of the CPU. This would mean that
the sender would not even be aware that the receiving software decided to drop the mes-
sage. This would, in the long run, increase the network traffic and does not even solve the
problem of the race condition, described above.

A version of dropping could be implemented by using direct writes and reads, which
RDMA supports. The notifications, provided by RDMA send operations, however, are
crucial to the design of the Selector at the core of RUBIN.

Stop-and-wait

Stop-and-wait describes the behaviour of the participants communicating using the stop-
and-wait flow control scheme. Each participant is aware that it is allowed to send a single
message, once it does so it has to wait for the receiver to acknowledge that the message
arrived and that it is now able to receive another message. Stop-and-wait is commonly
implemented in reliable connections, where one can assume that the message will at some
point reach the receiver, and the receiver will be able to send the acknowledgement.

Stop-and-wait, however, does not provide the necessary performance, as Reptor’s per-
formance is highly dependent on low latency network traffic [26]. Stop-and-wait roughly
doubles the latency, because it necessitates the acknowledgement to be sent in response.
Stop-and-wait excels in its simplicity. The approach of notifying the peer about ones own
ability to receive messages can be used in our case. To reduce the overhead on each mes-
sage one needs to prepare and notify the peer about the ability to receive multiple mes-
sages in a single message. This way the overhead of the additional message can be divided
across the number of messages which can be sent based on that information. This pro-
posed scheme is most performant, the higher the number of messages a peer can prepare
for and the faster that additional message can be sent.

That scheme could be further optimized by not necessarily requiring an additional mes-
sage containing only flow control information, as the additional data required can be ap-
pended to the normal messages sent at a lower cost than sending an additional message.
This can be taken even further by looking at the information available to both peers taking
part in the communication, leading to the receive window flow control scheme.

Receive window

The solution, reduced to the fundamental construct, is visualised in figure B4. Similar
to the TCP receive window, both peers will keep track of two additional numbers and
interchange information about their state with every message. The window represents the
number of available buffers, ready to be used to receive buffers, this number is computable

Figure 3.4.: Example sequence diagram of the worst case: one peer predominantly sending, apply-

ing flow control.

Peer A Peer B

initialized with minimal amount
of prepared space

[msg_1|space_a]

updates send-
window size to
space_a

loop = [peer wants to send]

alt | [window > 0]

[msg|space_a]

each party keeps their window
size up to date with each message

[window =01]

Peer A waits for message signaling
more space before it sends more
messages to Peer B

[space_b]

Peer A Peer B

3. DESIGN

27

28

3.2. FLow CONTROL

locally at any point. The state of the peers is described by two integer numbers. First,
their knowledge about the window size of the remote peer. To keep in sync with the
remote’s actual window size, this number needs to be decreased, with every message sent
to the peer, and updated once the peer prepares more buffers. Secondly, they need to keep
track of the knowledge the remote peer has. Because RDMA offers a reliable connected
channel, the local peer can count the number of messages the remote has sent. This allows
calculating the remote peer’s knowledge about the local peer’s capabilities. This second
value will slowly drift out of sync, due to the posting of new receive WRs, which grow the
window size. The first part is rather trivial, if'at any point the local peer knows about the
size of the window, updating the window size with each message is simple. The second
part, the assumption that the remote peer is also keeping track of the window size, is
necessary, to know when to update the remote’s state, if their knowledge goes too far out
of date.

This means additional rounds of communication, just for flow control, are not neces-
sary. Only if the remote peer’s knowledge is outdated, a single message, just containing
flow control data, needs to be sent. Those flow control messages do not need to be ac-
knowledged either. Furthermore, the additional information about the window size can
also be appended to the handshake step of Reptor because any added information can be
seamlessly removed. This means, replicas only have to be able to receive a single message
and can then adapt to their remote. Importantly, only a few bytes have to be appended to
each message. Assuming that those values can be kept reasonably small, when encoded for
transmission, and the messages themselves are far larger than the additional bytes sent,
then the overhead, on the network, per message sent, should be negligible.

In the bigger picture, the memory management structures from chapter &, especially
the Managed Buffers, as well as the buffer rings, can be used to implement this behaviour.
Mapping each Managed Buffer to a message, the buffer ring can keep track of the buffers
currently prepared to be used for receiving, using the reference counter. Upon receiving
data, the Managed Buffer can be used in Reptor, like any other buffer, with the difference
that it needs an additional call, when the data has been processed, to mark the buffer as
freed. This way, the receive window is represented by a chunk of Managed Buffers, from
the buffer ring used for receiving, indicated by non-zero reference counters.

A more realistic bidirectional conversation using this flow control paradigm, and a
more complete picture, is shown in the sequence diagram BH. A complete analysis, and
worked example, is shown in E3.

Sliding window

TCP, which the receive window flow control scheme is inspired by, does enable further
functionalities grouped under the term sliding window, which contains the receive win-
dow scheme, among other things. This is necessary, because TCP builds a reliable and
ordered transport layer on top of the not reliable and unordered internet protocol [24].
Some assumptions about our system influence the choice on what can be omitted from
the TCP flow control implementation. The replicas will all prepare the same size of buffer

Peer A

Peer B

initialized with minimal amount
of prepared space

[handshake|space_a]

updates send-
window size to
space_a

e [Dandshakelspace b]

updates send-
window size to

space_b
loop [communication]
alt [A wants to send]
[msg|space_a]
opt [update A]

realizes A's know-
ledge of space_b
is outdated

. opace bl

[B wants to send]

[msg|space_b]

opt [update B |

realizes B's know-
ledge of space_a
is outdated

--------------------- o

[space_a]

Peer A

Figure 3.5.: Complete messaging scheme.

Peer B

3. DESIGN

29

30

3.3. SECURITY ANALYSIS

ring, and all buffers are the same capacity. Further, replicas, experiencing Byzantine Fail-
ure, attacking the flow control implementation of another replica will only cause that
replica to be unable to communicate with the faulty replica. This means, a failure in the
flow control will only cause the affected channel to crash or stop working, rather than all
channels the replica has.

Most of the left out features can be omitted because RDMA, in a reliable communication
mode, already provides what TCP has to achieve through flow control, on top of IP. Also,
if one of the QPs, taking part in a communication, enters an unrecoverable failure state,
the other will do so too. This removes the possibility of half-open channels. Because TCP
packets can be dropped or may not reach their target, they need to be able to be resent,
as TCP aims to provide a reliable transmission. This adds additional communication be-
cause the state of transmitted packets needs to be queried. Implementing receive window
for RDMA can be further simplified because transmissions are error-free. This removes
the need for negative acknowledgements in the transport layer too.

3.2.5. Scope of implementation

Implementing the presented flow control scheme in Reptor requires some changes to be
made, not only to the network layer, but will also necessitate some changes to be propa-
gated into Reptor’s higher layers, as well as the Selector implementation of RUBIN. First
of all, because of the buffering nature of TCP, and the way the old implementation of RU-
BIN was integrated with Reptor, there is currently no intended way to signal Reptor that
the sending of a message failed. The closest to this would be using the Selector to disable
sending for the channel that is currently unable to send, due to the flow control state. It is
currently assumed that the socket will always be able to send, which means those changes
need to be both applied to the Selector and Reptor’s higher layers.

3.3. Security Analysis

Memory regions are read from and written to directly. A compromised machine can still
read and write to all registered parts of memory, which it was granted access to, at will. To
develop secure software one has to assess this as an attack vector and inherently not trust
any memory which was registered for RDMA. An additional risk, considering the layout
of RDMA communication, is that the authentication, used by the remote to initiate one-
sided operations, could be guessed [28]. The permission management is done by splitting
the authentication across two keys, a local key, used for identifying local memory regions,
and a remote key, which authenticates the remote to write to and read from the memory
region. Using the two-sided RDMA SEND the rkey does not have to be used, because the
sender does not know where the data will be written to [25]. This means that even if the
rkey is not shared, a remote peer, connected by RDMA, could feasibly guess rkeys [28], and
directly read from and write to memory it was not granted permissions for. The problem
ofthe rkey’s security is that they are predictable [28], and side-channel attacks on modern
RNICs are possible too. This is not by design and could be resolved in future iterations

3. DESIGN

of the hardware, as the attack is purely based on the implementation of the RNICs. It is
also feasible that future RNICs could allow disabling one-sided operations entirely, to rule
these kinds of attack out.

On the other hand, the permissions structure of the RDMA enables forbidding the en-
tire communication with a remote peer. Additionally, all network traffic over InfiniBand
is securely encrypted [I6] and, according to Mellanox Technologies [I6], provides better
overall security than standard high-performance networks. Each message is paired with
the hardware address, queue number and sequence numbers combined to form two CRCs,
making up a packet. This security partially depends on the low latency of messages and
CRC used, which makes it increasingly difficult to fake a packet before a real one is sent.
Under these assumptions, RDMA can be used to share memory which can be trusted [23].

This does not contradict that memory received or read through RDMA cannot be trusted.

Because if'a host is exhibiting Byzantine faults, it remains capable of sending arbitrary data
and read all memory regions it has access to. Though the right to do so can be revoked by
the remote party. Assuming that trusted shared memory can be built and RDMA can be
used for BFT protocols, this still leaves an attack vector when using RDMA if the applica-
tion using it trusts data received or read with it inherently. In our case, if we can assume
that only RDMA SEND operations are used, the risk of misusing the rkey diminishes.

31

4 Implementation

The implementation was done in Sun’s Java 8, based on the Reptor framework including
the changes undertaken to enable the network layer to use an RDMA Java NIO Selector [26]
called RUBIN. Different approaches were considered and the majority of them taken to
investigate their feasibility and potential. The design chosen in chapter B is implemented
in logical steps with unit and integration tests at each stage.

4.1. DiSNI Upgrade

The most popular library to make use of RDMA communication in a Java application is
DiSNI. This library was used before to implement RDMA in Reptor, because Reptor is
written in Java. DiSNI provides an open-source implementation of the abstract Verbs API
written in a combination of C and Java [d]. The reason an implementation of the RDMA
Verbs API is preferable, is because they are closest to the actual hardware functionality the
RNICs provide to be used. Circumventing the default Java Network Interface also enables
running at ultra-low latency because the Java Network Interface of the Java Virtual Machine
does not have to be initialized, which removes some additional overhead [27].

4.1.1. Existing implementation

The implementation of the network layer using RDMA in Reptor made use of the Java
library DiSNI version 1.4 [26, G]. An effort was made to upgrade all of the projects applica-
tions to use the, as of the time at the beginning of this thesis, newly released version 2.0
of DiSNI. Since then another version bump has taken place, to version 2.1 on the 20th of’
June 2019. The porting of the project to version 2.0 of DiSNI was only partially successful.

4.1.2. Porting Reptor to DiSNI version 2.0

Separated unit tests and applications were able to be ported over, even the implementation
of the Java NIO Selector built on top of DiSNI [26] was ported successfully.

There were two different strategies to change the Selector implementation, making use
of DiSNI, following different philosophies. First, to allow easier upgrading of DiSNI ver-
sions in the future, and be closer to idiomatic Java, it was attempted to write a sort of’
wrapper around the DiSNI library. The idea was to only minimally change DiSNI and
build a kind of framework around it, which the Selector implementation of RUBIN could
make use of. This fundamentally succeeded but would have required large amounts of
the Selector and Reptor to be changed to integrate it properly and was put aside in the
interest of time. The more serious strategy was then to directly change DiSNT’s source
code and keep the Selector implementation identical. This meant both the old changes
to DiSNI needed to be transferred over in addition to reverse engineering parts of DiSNI

34

4.2. ZERO BUFFER COPY

to add backwards compatibility between version 2.0 and 1.4 after the fact. Having DiSNI
undertake a major version change meant this was no small task, as even the way the code
was structured changed from version 1.4 and 2.0. Finally, a version which passed the Java
compiler and successfully ran unit tests was achieved through this direct patch strategy.

However, the entirety of Reptor was not able to function with the replaced Selector.
This could be due to a different implementation of DiSNI on the native side (written in
C) or, because the effort to port Reptor to DiSNI 2.0 was undertaken before the imple-
mentation of flow control, some data race, previously harmless but now causing Reptor’s
SocketChannels to misbehave, could be the culprit. It is reasonable to plan to under-
take the version upgrade of DiSNI in Reptor in the future, as stability and support for
more functionality should increase by the upgrade. The limited testing and benchmark-
ing done with DiSNI 2.0 using the slightly changed Selector implementation did not seem
to benefit noticeably, however, no memory profiling or long term tests were undertaken.

4.2. Zero Buffer Copy

The buffering and general memory allocation solution, predating the work presented in
this thesis, can be separated into send and receive components. On the sending side, the
implementation made use of a functional object buffac, which on call with the argument
bufsizeallocated a DirectByteBufter using ByteBuffer.allocateDirect (bufsize). This
simple solution provided each outgoing message with a buffer to serialize into. The func-
tional object of the direct allocation was also provided to each network buffer, and other
network classes, to allocate additional memory alongside an already allocated buffer they
can use. This function to allocate was used to replace the inherited buffer, with another
buffer of greater capacity, in case the data outgrew the initial buffer. Finally, before be-
ing sent using the SocketChannel, the contents of the message buffer were copied into
the only send buffer prepared in the SocketChannel and its corresponding send WR was
posted and executed.

The receiving data flow is based on the array of ByteBuffers in the SocketChannel, which
are registered for receive WRs, and a sublist of the WRs are regularly posted. The Selector
notifies the framework and protocol at large about the event of an incoming message,
the Work Completion Queue is then polled for Work Completions. The first completed
WC can then be queried for its id which relates to the buffer, which holds the data of
the completed data transfer. The contents of this buffer are then copied into a ByteBuffer,
provided by the caller, and a reference to the buffer is returned. Depending on the link and
configuration of the stack either the newly created ByteBuffer, used to call the read routine,
or the returned buffer are then used to serialize the data into an object used by the protocol
at large. The encoding, the data is serialized into, is Reptor’s own PushMessageEncoding.
There is no guarantee that the data held by the returned ByteBuffer was not changed by
subsequent RDMA receives before it is serialised. There was also the possibility that some
configurations attempted to resize or flip the ByteBuffer returned by the SocketChannel,
which would interfere with the RDMA request posted. The problem arises because the

4. IMPLEMENTATION 35

buffers have to be registered to be used for sending, and incoming data is written into
the registered bufter location. There is no guarantee that during a resize or flip the actual
memory location of a buffer will not be changed by the JVM. This means that, the physical
memory location of the buffer may not be the initially registered one, after a resize or flip.

Another notable feature is batching of requests posted by the SocketChannel. The pre-
existing implementation posted the receive requests with indices between 0 and BATCH_NUMBER —
1 including. However, if the total number of buffers was equal to that number all receive
requests were posted. This re-posting was undertaken when receiving a message which
was the fifth to last message posted. How far ahead this re-posting is of exhausting the
total number of outstanding receive requests is more impactful for the performance eval-
uation.

4.2.1. Implemented memory management structures

The new memory management structure following the analysis and design in chapter B
is itself structured in multiple layers managing access to a buffer container. The entire
structure implemented is shown in table B

The unit of the memory management is the ManagedBuffer class. To be thought of as
an extension of the ByteBuffer in almost all ways. An instance of a ManagedBuffer is ei-
ther a ManagedByteBuffer or a NativeByteBufter, both of which expose the same API as a
ByteBuffer would. ManagedBuffers are not able to be extensions of ByteBuffers, which
obstructed the possible simplicity of implementation. Part of implementing the new
memory management, therefore, entailed changing the signatures of Reptor’s functions,
to not take ByteBuffers but instead ManagedBuffers as arguments. That is why the two
separate classes, ManagedByteBufter and NativeByteBuffer, implementing the Managed-
Buffer interface exist. After changing the signatures, the NativeByteBuffer can be passed as
a ManagedBuffer and will behave identical to a ByteBuffer, while the ManagedByteBuffer
is implemented to support RDMA and check for correct usage. This means trying to flip
or grow it will cause an exception to be thrown which allows for providing safety of some
properties at compile time.

The ManagedBufferRing acting as the buffer ring described in chapter B can be imple-
mented succinctly following the design outline. Internally storing the ManagedBufters
in an array with a counter to index them in order. It has some additional functions to
access the ManagedBuffers memory directly to register them with the SocketChannel to
map one buffer ring one-to-one onto the buffers used by the SocketChannel for send and
receiving respectively.

There are more classes either built on top of the ManagedBufferRing or exhibiting sim-
ilar functionality that are grouped by the ManagedMemory interface. ManagedMemory is
a rather simplistic interface. All it requires is that a class is capable of producing buffers,
with no additional required properties. This could be extended upon in the future, struc-
turing the memory management even further by having different ring structures imple-
ment different interfaces to mirror their exact behaviour and properties. One very generic

4.2. ZERO BUFFER COPY

class, aiding in replacing the old memory management with the new one, is the Func-
tionalMemoryConverter. It can convert lambda objects into the new memory manage-
ment structures and vice versa.

It is also obvious that configuration classes will instantiate connections to multiple
peers. They will, therefore, will require classes akin to factories for structures like the
ManagedMemory, which the ManagedBufferRing is an instance of. Responsible for this
operation are instances of the classes SingleRingFactory and MultiRingFactory, with dif-
ferent implementations of the ManagedMemoryFactory interface. Also, to keep a smaller
memory footprint, there’s the option to use Singletons of those factories to ensure that
each runtime only has access to a fixed, and constant, memory pool for message buffers.
For the use without RDMA, both send and receive factories can be used to drastically re-
duce the amount of memory allocated.

4.2.2. Extending ByteBuffer

Ideally, the ManagedBufler class could have been an extension of the ByteBuffer class. But
the way ByteBuffers are implemented in Java 8, having exactly two classes extending the
abstract ByteBuffer class, in the DirectByteBuffer and HeapByteBuffer classes makes it
impossible to extend the ByteBuffer class without making additional efforts and leaving
”Standard Java”. This means that the ByteBuffer class will not be extended, which would
result in a cleaner refactoring process with fewer method signatures changed and less
boilerplate code written. It, instead, will be necessary to implement the ManagedBuffer
classes as wrappers around DirectByteBuffers, which can interact with the RDMA library
DiSNI.

The reason extending the ByteBuffer class would be impossible, is that the constructor
of the abstract ByteBuffer class itself’is package-protected, and even DirectByteBufter and
HeapByteBuffer are not directly instantiable, but instead need to be allocated by a static
call to ByteBuffer allocateDirect or allocate methods. Some ways to circumvent this would
be to use reflection to access protected symbols in the Java Standard Library. This would
reduce performance because the compiler is able to optimize the ByteBuffer classes, es-
pecially, because it can be sure that only two kinds of extensions are possible to exist at
runtime. Another way to extend the ByteBuffer class would be to create a class in the same
package the ByteBuffer class exists in, which is against Sun’s Java license agreement. Even
then the community seems uncertain if such an undertaking would be successful [I0].

4.2.3. Buffer Solution

The implementation of the classes described in chapter B strongly depends on the specifics
of the ManagedByteBuffer class. The goal to achieve zero-bufter-copy is influenced by the
earlier paper implementing RDMA in the Reptor framework [26] as well as other works
arguing the requirement of zero-buffer-copy for efficient use of RDMA [I7, 13, ¥]. Although
with small message sizes there is an argument to be made that a memcpy is faster than the
overhead presented by the memory management necessary to support zero-bufter-copy

‘[PPOoWI 9dUEJLISYUL PUE 9INIONILS SSE]D uﬁuavmmﬁma %HOEUE YT 9IqEL

nyng | Ss9x 1pnga34kg ay1[saaeyaq rapgngpadeuey syusura(duy png PPNgaAgaAnieN
oTeME
npgng sax VINQ@Y st pue Adod 1apgnq sproAe 1opngpadeury syuswajduy npng npngaiAgpadeury
nygng | V/N aoejIayul partdsur Ipngajhg saureg npgng pgngpadeuey
Arours|n sax a1mjonas Sull e Ul Iagngpageur|y saSeuey | [PUURYD SurgropgngpaSeuey
Kx010®,JAI0UIaIN INIONIIS
10 Axowayl | sox | sy} 0} SUIWLIOJUOD SSE[D SnowlAuoue Ul uorpunj sdelp | UOTPUNJ | IIHIAUODAIOWIDATEUOTIOUN]
fzouray | V/N Azowrawr Suture}qo I0J SPOYIRUW SaUYdJ | [dUURYD Kzowra\padeury
K1oyoeghIouray ON SurgiapgngpadeueAl 9UO 0} 9DUIIJAI SUTEJUOD DUBSUI YR | [dUURYD) K10yoeg3urygardursg
K10108JAT0WISIN ON sSurgrangpaSeury MoU 2)eIdU3 0] A[qE ST DUBISUL o] 1999 Kx010eg3urgnmiA
K1opeghroundy | V/N s3utLI 0] ss200® SUTUTEO I0J IDBJIAUIL SAUYI(V/N K10yoegAr0tIa]A PadeURIA
K10108JAT0WISIN 3urx 194190
pue uoje[3urg ON -3I 10} u032[3UISAI0}0EJSUTYAIOWITA] JO 2OUB)SUT UOIR[SUIS | JWIUMY K10310833urghIoUaIAADY
K10108JAT0MISIN 3ut1 1opuas
pue uoj[durs ON 10] u0)R[3urSAroloeJ3urgAIouwajy Jo 20UBISUI UO03UIS | dwnuny K101oe3urgArowajApuas
Kxoyeghrownoy Sury
pue uopduls | V/N | -IapgngpaSeury 2UO 0} 2dUIJ2I SUTUTEIUOD SSe[d PeIsqy | swnuny | uol[dursiioejdurgirouray
adAT, 7 VINQYT 7 uoroung adoog SSE[D

38

4.2. ZERO BUFFER COPY

[8]. The memory management implementation is using buffers of a fixed size in a buffer
ring, which are reasonably above the critical buffer size at which those considerations have
to be taken into account.

The reason for implementing the ManagedBuffers the way presented here is that they
can override and control certain operations to guarantee compatibility with RDMA and
the implementation of zero-buffer-copy. The entire class diagram is shown in figure &1
with per class descriptions in the table BT including the intended scope and RDMA aware-
ness. The capacity of the internal ByteBuffer of any ManagedBuffer has to be equal to the
buffer sizes used in the SocketChannel to allow registration of the buffers. For this rea-
son, the Singletons at the top of the memory stack are initializing their buffer size with
the static constant BUFFER_SIZE in the SocketChannel class and the length of the inter-
nal ring to BUFFERS_NUMBER. This way it can be guaranteed that the ManagedBuffers and
even the ManagedBufferRings stored inside the singletons are able to interoperate with
the SocketChannel. This BUFFER_SIZE, therefore, presents an upper capacity limit on any
message to be sent using the framework. It also prohibits classes in the network layer to
attempt to grow the buffer they are provided with. Though, this is no more limiting than
the original RUBIN implementation as the outgoing messages were also limited by the
capacity of the single send buffer in the SocketChannel.

The new implementation to transmit messages presents a way to achieve zero-buffer-
copy with a constant memory footprint used for the send buffers. The functional allo-
cation call was replaced with ManagedBufferRings and factories creating ManagedBuf-
ferRings. The exact number of unique buffer rings is dependent on the configuration,
though in general, it follows the scope shown in table &1, with one transmit ring per
channel. Replacing the call to the functional object is the invocation of the next method
of the ring. In the simplest case, just the next buffer in the ring is returned. Before this
can be done, the number of references to the buffer are manually counted. This also
requires the owner of the buffer to invoke free on the ManagedBufferRing with the Man-
agedBuffer. Only currently free buffers are returned, otherwise, they are skipped. If the
entire ring is in use, that means every buffer is occupied, an exception is thrown giving the
choice of how to handle this state to the caller. On creation, the ByteBuffers backing the
ManagedBuffers in the ManagedBufferRing, also replace the SocketChannels ByteBuffer
array for send buffers, each ManagedBuffer is then assigned its corresponding send WR.
Most of the network layer can then remain unchanged, with just the behaviour of the
NetworkSinkBufter changed substantially to avoid buffer copies, among other operations
breaking the relationship between the backing ByteBuffer and the already registered send
WR, stored alongside it, in the ManagedBuffer. In the final calls of the network layer, the
ManagedBuffer is unwrapped into the ByteBuffer and the send work requests, which is
subsequently posted by the SocketChannel. The limit of the ByteBuffer is then changed
directly to allow interoperability with the old implementation. This also allows the exis-
tence of multiple buffer rings for sending, as all of their backing memory can be pinned
and send WRs created. Those send WRs can then be posted once the buffer is to be sent.

4. IMPLEMENTATION 39

To keep the memory footprint small, as few buffer rings as possible should be used, as
allocating each of them constantly increases the used memory. Because of this, and the
manual reference counting, the whole runtime can also safely share access to the same
ManagedBufferRing using the SendMemoryRingFactory Singleton, to reduce the used
memory and memory allocation calls.

The receive data flow direction is implemented similarly. However, the existence of’
exactly one ManagedBufferRing per SocketChannel is important. This is taken care of by
the structure in which the ManagedBufferRings are created (ManagedMemoryFactory —
SingleRingFactory). Analogous to the registration of the send buffers, each SocketChannel
can be provided with the ByteBuffers ofa ManagedBufferRing to replace its receive buffers,
before registering them for RDMA receives. This can be further simplified by allowing
the array of ByteBuffers allocated and registered in the SocketChannel to be outwardly
represented by a MangedBufferRing. Using the buffers allocated at the initialization of the
SocketChannel, a ManagedBufferRing can be created referencing those buffers wrapped
in ManagedBuffers. Then, when returning the buffers to travel up through the stack of
layers in Reptor a reference is counted and when the message is finally marshalled into a
PushMessage the reference is released and the buffer is free to be posted again.

Though the benefits of an implementation like this have to be weighed, accounting
for the overhead of the additional memory management structures and the reduced time
spent allocating memory and garbage collecting, this implementation allows for easier
integration with RDMA.

Future work could include the use of different SocketChannels for differently sized
messages or even a different communication method or channel for sending flow control
messages, as they pose the exception for may of the consideration here.

4.3. Receive Window

The receive window, inspired the flow control in TCP, described in chapter B2 funda-
mentally mirrors the receive window implementation found within the TCP protocol,
with a few omissions, due to guarantees and features RDMA provides. It is used for the
exact same reason TCP has flow control. The receiving side of any communication has
to have buffers prepared to receive the entire message before they can process the in-
coming buffers. This creates the back pressure. If there are no buffers prepared, because
the sender is faster at sending messages than the receiver is at consuming and preparing
buffers, a system can enter an error state or messages are lost.

Instead of requiring the protocol built on top of the Reptor framework to be aware of’
the possibility of flooding its peers, the implementation presented in this thesis is entirely
contained in the network layer. Most of the logic required to maintain a receive window
can be moved to the lowest layer of the send and receive calls. In the case of Reptor,
modified to use a Selector using RDMA sockets, this means the implementation of the
receive window logic can be moved inside the SocketChannel class.

40

4.3. RECEIVE WINDOW

SendMemoryRingFactory

RecvMemoryRingFactory

- singleton : SendMemoryRingFactory

- singleton : RecvMemoryRingFactory

- SendMemoryRingFactory(length, capacity : int)
+ MemoryRingFactorySingleton getinstance()

- RecvMemoryRingFactory(length, capacity : int)
+ MemoryRingFactorySingleton getinstance()

MemoryRingFactorySingleton

ring : ManagedBufferRing

+ MemoryRingFactorySingleton(length, capacity : int)

implvents

SingleRingFactory
- ring : ManagedMemory

ManagedMemoryFactory

+ :"Iﬂl M yr M yo
RingFactory

- length : int

- capacity : int

+ MultiRingFactory(length, capacity : int)

ManagedMemory

implements

- registeredRDMA : boolean

+ ManagedBuffer next()
+ boolean isSource(ByteBuffer b)
+ boolean isSource(ManagedBuffer b;

+ abstract void setSendW!
+ boolean iSRDMA()

+ abstract IntFunction los(vxeeuﬂac()
+ abstract IntFunction tol

)
+ abstract ManagedButfer F?e(%anaged(B)geBuﬂev b)
s(Arraylist sendwrs)

anagedBuffac()

ManagedBufferRing

- m_length : int

- m_capaci?' zint

- m_ring : ManagedBuffer{]
- m_references : int[]

- counter : int

FunctionalMemoryConverter

+ mbufconv : FunctionalMemoryConverter
+ bbutconv : FunctionalMemoryConverter

- boolean nextFree()
+ void register(s : SocketChannel)
+ ByteBuffer() asBufferArray()

+ ManagedBufferRing(length, capacity : int)

+ Mar M y fromBuff iffac : Intfunction, bufsize : int)
+ ManagedMemoryFactory generateFromBuffac(buffac : Intfunction, bufsize : int)

ManagedBuffer

- m_internal : ByteBuffer
- sendwr : ArrayList
- source : ManagedMemory

+ void free

+ void put(ByteBuffer b)

+ ByteBuffer asByteBulffer()

+ Buffer clear()

+ Buffer compact()

+ int capacity()

+ int position()

+ Buffer position(int newPosition)
+ int limit()

+ Buffer limit(int newLimit)

+ void copyBuffer(ByteBuffer src)
P i void register(s : SocketChannel)

IManagedByieBuﬂer I INauveByleBuHer |

Figure 4.1.: Complete class diagram showing the classes managing access to memory and their

composition.

4. IMPLEMENTATION 41

As mentioned in the design chapter, this goal can only be achieved to some part, without
changing small parts of Reptor and RUBIN. Specifically, the Selector of RUBIN needed to
be changed to allow signalling about the current flow control state, that is whether or not
a SocketChannel is allowed to send or not. It already was used to determine whether a
SocketChannel has data to read, so adding this was not especially difficult. Reptor and
the different layers within, as well as the protocol running on top, did also have to be
able to either react, or the layers needed to handle this new possibility for layers above
themselves. This meant to either escalate the exception when trying to write when the
Selector is unable to select a writeable SocketChannel, or to buffer the messages until the
SocketChannel is allowed to send again. To test the difference between the two strategies,
both have been implemented in Reptor, with the escalation of exception strategy being
the one that was used for further development because of the zero-buffer-copy target.

First of all, there are some defining characteristic values of the network layer which de-
termine the behaviour of each connection. Defining the maximum amount of memory
used by the network layer is the number of buffers reserved for the bufter ring BUFFERS_NUMBER.
Not impacting the actual flow control implementation but effecting its performance due
to latency and total transfer duration for each message is the capacity of each bufter. Due
to the memory management implementation, the capacity of each buffer needs to be the
same for each connection. There could, however, be multiple different connections be-
tween two replicas which use different buffer sizes.

The flow control scheme is based on the fact that both replicas are attempting to re-
plenish message buffers as soon as possible. The method with which this is done is by
posting the receive requests for a batch of buffers, sequential in the buffer ring if the cur-
rent number of usable buffers approaches a threshold. This defines two further charac-
teristic variables: BUFFERS_BATCH, the number of buflers in a batch, and BATCH_OVERLAP,
the threshold for when to post another batch.

We also assume that throughout the communication rounds all non-faulty replicas use
the same or at least compatible values for these variables. This mostly concerns the bufter
capacity, using a larger one to send or a smaller one to receive will cause a faulty QP state.

42

4.3.1. Flow Control algorithm

The diagram shown in figure B2 shows an ex-
ample communication following the flow con-
trol structure implemented, alongside notes
showing the client-side calculations taking
place. As described in B2 the state of each
peer regarding the flow control can be reduced
to a tuple of numbers characterizing the state
of the remote peer and a method for querying
the local window size. Using the same nam-
ing scheme as the diagram, the first numerical
variable is pp short for "peer prepared". The pp
variable is kept equal to the number of buffers
the remote replica is prepared to receive. Ev-
ery time a message is sent to that replica pp
is decremented to reflect the consumption of
that buffer. The second numerical variable is
pk, short for "peer knowledge". This variable is
updated to keep in sync with the pp value of the
remote replica. To do this pk is decremented
with each incoming message. This is very triv-
ial compared to the algorithm necessary to im-
plement a similar feature in T'CP, because our
RDMA QP is a reliable connection, and each
message is guaranteed by the network protocol
to be sent exactly once.

The part of the communication structure
that relieves the back pressure of the system, is
the following condition: a peer is only allowed
to send if its pp is above a certain threshold,
that is that the peer knows that it has to not ex-
hausted all prepared buffers of the remote peer.
In the actual Java implementation pp and pk are
already adjusted by the threshold, changing the
condition to pp — threshold > 0. Also, in com-
bination with the Selector structure, this means
the SocketChannel has to report not to be write-
able when this condition is met.

Once a message is exchanged, the cur-
rent number of locally prepared messages (pm),
alongside all necessary information to recon-

4.3. RECEIVE WINDOW

Peer A Peer B

Both peers are initialised with the
same batch_size.

pp == peer prepared messages
pp := batch_size - reserved_buffer

At any point the peer can calculate
it's own prepared messages == pm

based on the messages received
(RDMA allows for RC) each peer
can also calculate what the other
peer "knows" about its own window
-> this allows calculating how out-
of-date their view is == pk

[handshake|pm(A)]
. PR(B) := pm(B) .
. pp(A):=:p%n(A)71
.. [fandshakepm(®)] | J
pk(A) := pm(B)

pk(B) := pm(A) - 1

Then they communicate as before,
but appending pm to each buffer.

alt [pp(A) > threshold]
[msgpm(A)]

pp(B) == pp(B) - 1
pk(B) := pm(A)

pkiA) := pk(a) - 1

[pp(B) > threshold]
[msg/pm(B)]

PR(A) == pp(A) - 1
pk(A) := pm(B)

pk(B) 1= pk(B) - 1

[pk(B) < pm(A) - threshold]
[msg=0jpm(A)]

_ pk(B) := pm(A)

PR(A) == pm(A)

[pk(A) < pm(B) - threshold]
[msg=0[pm(B)]

pk(A) := pm(B)

pp(B) := pm(B)

Figure 4.2.: Sequence

Peer A Peer B

complete implementation of

flow control

diagram showing

4. IMPLEMENTATION 43

struct the original buffer before the additional information was concatenated, are ap-
pended to the buffer. This flow control information is received on the remote peer,
which will update pp := pm, and the peer sending the message updates pk := pm. If any
peer becomes aware that the remote peer is about to starve, that is pk approaching the
threshold value, it sends a flow control message, initiating the update process. The only
static requirements of the network layer for this flow control scheme to function, is that
the BATCH_OVERLAP of batches, as well as the size of batches, and in extension the num-
ber of buffers available, are larger than the threshold chosen. The threshold is necessary
to allow the exchange of flow control messages if a peer has starved of slots for normal
messages. For the sake of this thesis the threshold is a static value unrelated to any other
variable, generally set to five. Arguably determining a more performant threshold value
adaptively could increase throughput and overall performance.

This implementation also requires no additional communication rounds and the ad-
ditional information appended to each buffer is only 5 bytes long. The necessary infor-
mation to be transmitted is the number of prepared buffers, in addition to whichever
information is necessary to reconstruct the original buffer. In the current implementation,
4 bytes are used to transmit the limit of the original buffer. The limit of a buffer in the
network layer represents the end of the written data. As the flow control data is appended
to the end of the buffer, information about the position of the original limit would be
lost. As an integer in Java is always 4 bytes long, the limit is appended as its 4 byte long
representation. The number of prepared bufters is represented by a byte. The theoret-
ical maximum number of preparable buffers is hardware dependent. In the case of our
machines, it is 16351. A byte is not enough to accurately represent all integers between 0
and 16351 which means the byte is to be interpreted as a code word. And accurate repre-
sentation is also not required, as the number transmitted has to convey an upper bound
the remote is allowed to send. The simplest code would be min(pm,255). As we allow the
machines to share magic numbers before starting to communicate, an arbitrary linear
multiplier can be chosen. Even if only an approximation of the prepared buffer number
can be sent, because both the local replica as well as the remote then update their variables
to the interpretation of the number, the local replica will be aware of the synchronisation
status of the remote. With the default code, sending the amount of prepared buffers, it
can be experienced, that one replica sends 255 messages, then waits for the update from
the remote and sends another 255 messages. This cycle can repeat multiple times. Even
though the receiving replica may have many buffers prepared, it could just takes too long
to update the remote before it exhausts it’s allowed window.

Animplementation using an integer to transmit the accurate number of prepared buffers,
instead of the clamped version from 0 up to 255, was tested. It was observable that fewer
control messages needed to be sent, but no measurable impact on performance was caused.
We hypothesize the 8 bit codeword is reasonably powerful enough to map to the field of
possible values. As a compromise, using a short typed value could be investigated on its
impact.

4.5. D1SCUSSION

There is a large space of possible implementations using this flow control scheme,
which could be investigated further. Additionally, using direct writes and direct reads
for reporting one replicas state to a remote replica could be used to separate BFT mes-
sages from flow control state. This could reduce the latency on control messages and, thus,
reduce the amount of time a replica is waiting to be allowed to send again. Writing the
local flow control state to the remote has been done by Dragojevic et al. [4], and in Reptor
it could even help simplify the interface between flow control and memory management.

4.4. Testing

Along with the implementation of the memory management classes, multiple unit tests
and preliminary benchmarks were written. Existing unit tests can be used to check for
the correct behaviour of the classes implementing ManagedBuffer, as well as the Man-
agedMemory classes. Structurally more abstract classes, like the Singletons and the Func-
tionalMemoryConverter, are also tested for their functionality and correctly entering the
failure states.

A larger portion of the work done introduced multiple new exception classes and be-
havioural changes to catch-clauses on already existing Exceptions. This was necessary
because of the stacked structure of Reptor, which allows for almost arbitrary configura-
tions and, more importantly, arbitrary layers to be neighbouring each other. Having Man-
agedBuffer, ManagedMemory and other introduced memory management classes throw
custom exceptions enables safety that all edge cases and failure states are handled, because
they can be checked at compile time.

Initial benchmarks, determining the time saved by using the ManagedBufferRing and
reusing the ByteBuflers, as compared to allocating new direct ByteBuffers, clocked in at
about 7 times faster.

4.4.1. Expectations

The amount of performance increase is strongly dependent on the utilization of the CPU.
In reference to the diagram of figure B3, zero-buffer-copy is the most performant if the
idle time of the CPU is close to zero. In a networked protocol, this means zero-buffer-copy
can only increase the performance based on the weakest link present in the network, as if’
a peer is faster at consuming messages than the remote peer is at sending, the time idling
could be used allocating and copying buffers without any deduction in Rounds Per Second
(RPS) achieved. This is why synthetic benchmarks show a speed increase unrealistic to
expect in a real application.

4.5, Discussion

This subchapter will be used to discuss the use and availability of RDMA, as well as some
assumptions made throughout the design process.

4. IMPLEMENTATION

Figure 4.3.: Diagram showing how full CPU utilization is needed to benefit from zero-bufter-copy.
The network speed needs to be the bottleneck.

4.5.1. Availability of RNICs

InfiniBand is a technology which currently only sees widespread application in data and
research centres. Other protocols and implementations, like the Internet Wide Area RDMA
Protocol (iWARP) and RDMA over Converged Ethernet (RoCE), suffer when used with low-
end network components or require a special setup [I9, I8]. The fact that they can operate
in existing Ethernet networks is favourable in some applications, enabling RDMA in con-
sumer, and non-specialised, networks. iWARP, in particular, is interesting because it de-
livers RDMA services over TCP/IP. According to Mellanox Technologies [19], this dooms
iWARP, as it forfeits RDMA’s core advantages, high throughput, low latency, and low CPU
utilization, by doing so.

iWARP’s goal is to enable RDMA over existing hardware and infrastructure. It makes
few assumptions about the network and its packets can be routed like any other TCP
packet. Thus, iWARP involves the entire TCP stack which, Mellanox Technologies [19]
claim, prohibits true and scalable RDMA operations. To transport RDMA iWARP stacks
multiple network layers on top of the TCP/IP layer, whereas RoCE, it’s direct competitor,
uses UDP/IP frames with fewer different technologies stacked on top [I9]. Instead of us-
ing RDMAP, a separate RDMA protocol, Direct Data Placement (DDP) and Marker PDU
Aligned framing (MPA) on top of TCP as iWARP does, RoCE only applies the IBTA Trans-
port Protocol [19]. This defines one of the larger differences between the two protocols.
iWARP, building on top of TCP is guaranteed reliability, whereas RoCE using UDP has
to gain reliability through another way. This is commonly achieved through converged
Ethernet which transforms the Ethernet connection itself into a reliable connection, but
also requiring special hardware.

45

46

4.5. D1SCUSSION

RoCE and iWARP are compatible in software. This is because both implement the
RDMA Verbs interface through the Open Fabric Alliance Stack. They can either be run
as a kernel implementation, enabling larger portability, or using the hardware of RNICs,
profiting from increased performance. They are each considered the standard for RDMA
by different companies and institutions [9).

4.5.2. RDMA for consensus
Touched on, in the section Security Analysig of chapter B, while RDMA provides many

security features, some of'its prerequisites to function efficiently have to be evaluated on
their security impact. First of all, as shown by other work in this field, like DARE by
Poke and Hoefler [23] or FaRM from Dragojevic¢ et al. [Z], RDMA can be used to create
trusted environments and even aid in the development of RDMA protocols [l]. From the
requirements of the different RDMA implementations in BE5, one has to assume that
replicas connected through RDMA are not only in physical proximity to each other. To
keep the reliability of the connection between replicas, and to not hurt the latency and
throughput, the replicas have to be connected to the same network switch or local area
network, at best. This provides a single point of failure, which needs to be considered
when deploying an RDMA based distributed service.

5 Evaluation

The system and integration benchmarks were run on machines with 2 sockets using Intel®
Xeon® CPU E5-2430 v2 @ 2.50GHz with 6 cores per socket and hyper-threading, totalling
24 threads. The system has 16 GB DDR3 RAM available across 4 DIMMs. RDMA is used
through OpenFabrics Enterprise Distribution (OFED). OFED is an open-source software
for RDMA and kernel bypass which is loaded as a kernel module [21]. The version used
is OFED-4.2-1.2.0. The RNIC used for RDMA communication is a Mellanox M'T27520
Family ConnectX®-3 Pro connected through PCIe Gen 3.0 for a theoretical maximum
data throughput of 8 GT/s, however, the combined throughput over the InfiniBand lanes
is at most 56 Gb/s [IR], with 14.0625 Gb/s per lane [IZ].

The used system is running 64-bit Ubuntu 14.04.5 LTS Trusty Tahr using the 3.13.0-
147-generic kernel, the operating system is not virtualized.

For benchmarking and evaluating logfiles, new python scripts were written which can
be used to interpret, analyse and visualise arbitrary logs written by Reptor. These are used
alongside existing benchmarks and tests to collect data for this chapter.

5.1. JUnit benchmarks

JUnit is a Java framework for writing repeatable tests [IZ2]. The project makes use of JUnit
version 4.12. There are multiple unit tests written using JUnit probing for proper be-
haviour of the implemented memory management structures and, to some extent, also
the flow control.

JUnit 4 supports the creation of benchmarks as well as tests when combined with the
JUnitBenchmarks plugin [29]. That combination was used to benchmark the performance
of the memory management implementation. Most specifically, the ManagedByteBuffer
and the ManagedBufferRing, as all other classes are either based on either of those or
are not vital for system performance. For example, the FunctionalMemoryConverter can
be run once, on start-up, the Singleton classes are identical to the ManagedBufferRing,
except for one additional getInstance call.

The benchmarks, written for the ManagedByteBuffer and ManagedBufferRing, aim to
compare their performance to the native Java ByteBuffer. As almost all of Reptor will
interact with the ByteBuffer wrapped inside the ManagedByteBuffer, the interesting met-
rics to take are the overhead required to create the ring structure, the time save gained
by reusing memory instead of reallocating and the reduction in time spent running the
garbage collector.

48

5.1. JUNIT BENCHMARKS

’ Type ‘ Iterations ‘ Write ‘ Round [s] ‘ Dev. [s] ‘ GC calls | GC time [s] ‘

Native 103 No 0.09 0.04 10 0.03
Ring 103 No 0.08 0.02 12 0.03
Native 10° No 9.62 0.56 1142 3.21
Ring 10° No 0.10 0.02 14 0.05
Native 10° Yes 10.6 0.72 1142 348
Ring 10° Yes 0.10 0.02 14 0.04

Table 5.1.: Results of JUnit performance benchmarks of ManagedBuffer and ManagedBufferRing
compared to Java’s native ByteBuffer performance. One iteration corresponds to either
1000 ByteBuffer.allocateDirect or ManagedBufferRing: :next calls.

The benchmarks, designed to measure those metrics, are averaged across at least 20
runs. All benchmarks are run single threaded. Because the round times of'a single alloca-
tion and a single ring initialization are so low, the smallest benchmark starts comparing
1000 ByteBuffer allocations of 1 MB to fully iterating through a buffer ring of length 1000,
of buffers with the same capacity. This is repeated 20 times. In this benchmark, a round of’
native buffer allocations take 90 ms (¥ 40 ms), with 10 garbage collection calls, spending
30 ms in garbage collection. The ring buffer benchmark has a round time of 80 ms (¥ 20
ms) with 12 garbage collection calls, also spending 30 ms in garbage collection code. The
buffer ring implementation always seems to be slightly faster. This can be explained by
the JVM keeping necessary prototypes loaded in memory to reduce access and instanti-
ation times, this, however, does not fully explain why it is not capable of doing the same
for the ByteBuffer benchmark.

To gain more accurate results and to investigate how the ring performs over a longer
system runtime, and to rule out that the Java compiler optimizes certain parts of the buffer
rings code away, if the buffer is never written to, two other types of benchmark are con-
ceived (see B). First, the amount of iterations through the ring are increased to 100 times,
also multiplying the number of native ByteBuffer allocations by 100, to be able to com-
pare results. To avoid compiler optimizations, messing up the results, an additional type of
benchmark obtains the buffer, from either the ring or a direct allocation, then writes to
it and frees the buffer again. This behaviour simulates the filling of'a message buffer for
sending with RDMA.

The results of the benchmarks shown in table Bl are very positive. Most notably, the
benchmark allocating new ByteBuffer objects spends 87 times longer in garbage collection
code and jumps into garbage collection about 81.6 times more often. This performance
advantage will only increase the longer the buffer ring stays in use compared to the al-
location of new buflers. Also, the small difference between the benchmarks, whether or
not the buffer is just allocated or also written to, shows that the compiler does apply some
form of optimization to the buffer ring structure, if the buffer is not written to.

5. EVALUATION

Connection Test buffer capacity comparison

—J— rps @ 1024B
—}— rps @ 4096B
—J— rps @ 8192B
—J— rps @ 16384B
—J— rps @ 32768B

- W

M

l/__/l\/k——-kvl—H"l+H-H—H+Hﬂﬂﬂ
N

100 10! 102
Seconds

Requests per second

Figure 5.1.: Distributed connection test evaluation on the development branch. With the server
running on beaglel, and the client running on beagle4. Restarting both for each new
benchmark and compiling both the client and the server for new buffer sizes.

5.2. Connection test

There exist multiple development versions with differing behaviour to compare. There
exist some test applications written in Reptor, both to test its own function, as well as,
to measure its performance it more realistic environments. For benchmarking of BFT
protocol implementations, deployed in a replicated state, there is the replicated system
benchmark B3. For a simpler setup, which can be launched distributed across different
machines more easily, and performs a simple ping-pong conversation, the connection
test can be used. The connection test is an application built on top of framework. There
are separate server and client implementations, which, after a message has been received
respond as quickly as possible, entering a loop. This is continued for up to 99 seconds,
and the achieved RPS for each interval are logged. The messages also contain a counter,
enabling both the client and server to check that messages arrive intact, and in the right
order.

In the most advanced branch, the flow control scheme ensures no crashes because of
the RDMA Queue Pair. It can be experienced that one of the peers receives a bufter filled
with zeros, which stops the connection test server from serving any more messages. The
distributed connection test benchmarks were taken on beaglel and beagle4.

The distributed connection test runs were undertaken with 7000 buffers per buffer ring
at different capacities (figure [B]). They are batch posted by the SocketChannel in groups
0f 1000, and batching is done 300 buffers before the current batch runs out. Out of the

49

50

5.2. CONNECTION TEST

Connection Test processed requests

100
< 25000 -
2 - 80
[V}
(9]
o
5 20000
9
9 (60 =
=)
@ 15000 £
5 3
5 L40 3
Q
£ 10000
3
c
]
) F 20
F 5000 -
0 Lo

1024 4096 8192 16384 32768
Buffer capacity [bytes]

Figure 5.2.: The columns show the total number of requests processed throughout the connection
test. Shown by the red line is the lifetime of the connection test at the specific buffer

size.

7000 buffers, five buffers remain reserved for control messages. Over the first six seconds,
an average number of 4505 RPS is reached using 1 KB buffers. The numbers were chosen
to produce representative results, the performance of the implementation as well as the
stability is, however, heavily influenced by the numbers chosen. Some, especially with a
greater total number of buffers, perform far better, even better than the implementation
without the flow control using the same configuration. Higher RPS are achievable dialing
the total number of buffers as well as the buffer size down Bl In terms of stability, the
system gains stability by increasing either the number of buffers or the capacity of the
buffers, as seen in figure B2

This configuration is also chosen to force control messages to be sent, as, on average,
every second the server sends a control message to the client to update its counter, as it
otherwise would stop sending. This imbues confidence that the flow control algorithm
works, especially because the benchmark runs for far longer and uses more buffers than
a single batch or even the entire buffer ring. Also noteworthy is that more than the five
buffers reserved for flow control messages can be sent, as those five are replenished as
soon as another batch is posted. It is observable that, this kind of benchmark still is not
stable. The symptom occurring is, that seemingly dependant on the buffer size, at some
point a buffer filled with zeroes is received. This is strange, as all buffers are appended at
least the flow control information. This causes the flow control implementation to send

5. EVALUATION

flow control messages, as the reported prepared size is zero. The buffer can even be ig-
nored, but the benchmark will stop at that time because a response is waited for. The new
error type is not crashing any replica, not even the channel but halting the transmission
of new messages after the empty buffer has been received. It is also obvious, looking at the
logs, that the end of execution is not caused by some sort of deadlock of the flow control
mechanism, as both replicas exchange flow control messages and update their state suc-
cessfully. They recover in terms of flow control, and would be ready to send again, if the
network layer received another message to send. This is a rather unsatisfying interpreta-
tion, but Reptor was not designed with the possibility of failing to send or having to resend
amessage, which now causes existing benchmarks to halt. The solution to this is to bufter
the messages as they come in. This is not an option when also applying zero-buffer-copy.

In this benchmark, the baseline RDMA implementation far exceeds it in performance
with an average of 279525 RPS served. This, however, exhibits the data race inspiring the
implementation of flow control. The RDMA baseline also is likely to crash with RDMA
QP Exceptions, running the system benchmark.

5.3. System benchmark

Similar to the Connection Test b2, the replicated system benchmark, also called python
benchmark, has differing results depending on the version of Reptor used.

The most stable version, implementing both zero-buffer-copy and flow control, using
the most simple settings, running locally, achieves 484.6 RPS with standard deviation of
16.3 (figure [E3H]). This is compared to 1153 RPS, with an average standard deviation of
91, using the RDMA baseline version, with identical settings (figure [B3d]). The system
benchmark can be configured to start distributed too, however, the results here show the
local benchmark results. It is replicated, because it spawns a number of replicas when
launched. A client can then send messages to the replicas, to receive responses. The sys-
tem benchmark, in particular, also launches clients, which send requests with zero values,
to receive responses from the replicated system.

During the benchmarks of the RDMA baseline implementation, on each run of 10 sec-
onds, at least one replica crashed, due to a unrecoverable QP state. These crashes are not
evident at all in the new implementation.

The benchmarks do not use the parallelized configuration COP [3]. The benchmarks
use one client and run the PBFT [§] protocol. It is possible to serve many clients. The
reason the benchmarks do not use the parallelized configuration, is because part of its
scheduling behaviour seems to break the one-to-one mapping from the receive bufter
ring to the socket channel, over the lifetime of the benchmark, which causes an RDMA
memory fault. The measurements in 63 show that the metrics of RPS, as well as, latency,
have worsened in response to the implementation of flow control. The RPS achieved has
decreased to 42%, and the latency roughly doubled. After letting the system stabilize for a
few seconds, a stable latency of around 2 ms is reached. This is likely due to the introduced
overhead of flow control.

51

5.3. SYSTEM BENCHMARK

3500 3500 800 8000
—F— Latency —— Latency
—— RPS | == res |
3000 3000 700 7000
600 1 L 6000
= 2500 k2500
= =
m 5 500 4 L 5000 _
2 2000 2000 48 B
p=} —3 —
2 32 400 4 I 4000 &
3 33 @
2 1500 1 T 1500 £ & =
il S0 s
¢ $ 3001 I 3000
o <4
< 1000 - L1000 =
200 4 L 2000
01 _F k500 100 1000
o+ 1o 1o
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
(a) Baseline implementation using RDMA (b) New implementation with flow control and zero-
buffer-copy using RDMA
1600 16000
—— Latency
-~ Latency (Baseline)
—— RPS .
1400 1 —F- RPS (Baseline) T - 14000
1200 - L 12000
@ 1000 1 L 10000
al
v —
=) (%)
< 3
< =
2 800 8000 T
o c
@ i)
8 ki
%3
e
£ 600 L 6000
400 L 2000
200 L 2000
0 0

(c) Comparison overlaying RDMA baseline

Figure 5.3.: Replicated system benchmark result plots for the baseline using RDMA and the new
implementation. Averaged across 10 runs with otherwise identical configuration. It is
observable that the time saved in memory management through zero-buffer-copy is
not outweighing the overhead added by the flow control.

5. EVALUATION

6000 6000
—— Latency
—f- Latency (Baseline)
5000 4 —F RPS - 5000
-E- RPS (Baseline)
n
= 4000 - - 4000
3 i
c =
3 >
23000 1 3000 ©
° [}
g s}
@ 8
S 2000 - - 2000
o
1000 A 1000
P S
- ¥ F F—F—F
0 T T T T T T T T T T O
1 2 3 4 5 6 7 8 9 10

Figure 5.4.: Replicated system benchmarks comparing the new RDMA implementation to the
baseline Reptor implementation using TCP. The benchmarks are configured identi-
cally otherwise.

These results using RDMA can also be compared to the original Reptor implementa-
tion, using the Java Network Interface based on TCP. The diagram B4 shows a similar
trend across both implementations, but it is clear that the RDMA implementation of the
network layer still does not utilize the strengths of RDMA. A possible reason for these
results could be a performance oversight in the flow control implementation. Though,
keeping the flow control scheme performant, was an active goal of this thesis, and best
efforts were made to reduce overhead where possible. Another reason for this could be
that the TCP Reptor benchmark is capable of sending smaller sized packets, whereas the
RDMA implementation is limited to sending same sized buffers, which have to be at least
as big as the largest packet that could be sent by the benchmark. Thus, more data needs
to be transferred over the network in the RDMA benchmarks.

5.4. RDMA optimizations

There are further optimizations available. They can either be enabled through the DiSNI
library or by changing how the DiSNI library is used in the SocketChannel and, in extent,
Reptor.

5.4.1. Doorbell batching

RDMA itself provides the option to batch notifications for completed work requests. This
means, an arbitrary number of requests can be completed and the notification about their
completion can be sent at once, saving bandwidth, thereby, freeing the data channel for

53

54

5.4. RDMA OPTIMIZATIONS

application data [25]. Enabling this optimization does interfere with the flow control im-
plementation that determines the number of messages a peer is allowed to send to its
remote. This could be circumvented by changing the flow control scheme to take this
batching of notifications into account. The BFT protocol running might need to be syn-
chronized with the network batching too, especially, if there is no timeout. As a result of’
testing batching of notifications, it seemed only possible to choose the number of buffers
reserved for control messages as the batching size for notifications, and only if the batch-
ing size of the SocketChannel class was a multiple of it. A similar problem is encoun-
tered by another optimization method. The posting of work requests is always done by
posting a list of work requests with the RDMA library. This allows for posting multiple
work requests at once, instead of just a single request at a time. The latter is, however,
more alike the behaviour of conventional communication protocols, thus, we post work
request lists of length one, containing a single work request instead of multiple, because
the network layer cannot expect any properties from the BFT protocol and a timeout ap-
proach was tested but did not deliver a working solution. The performance that could
be gained, stems from the overhead added by the memory-mapped I/O (MMIO) step of
posting a send request. The complexity of the MMIO step does not grow with the number
of messages sent, thus, batching in this sense also can be used to improve the performance
further. The posting of multiple WRs at once has further advantages, summed up in the
so-called Doorbell method [I3]. The current implementation for sending messages, called
WQE-by-MMIO, is more portable but is inferior in performance [I3].

The doorbell method is used for posting the receive requests for each buffer batch by
the SocketChannel.

5.4.2. Message inlining

RDMA has the feature of inlining messages. Inlined messages reduce the amount of com-
munication necessary to transfer the data between the RNICs. Therefore, a better perfor-
mance, most notably, due to reduced latency, should be achievable [25]. This, however,
comes at the cost of reducing the number of CPU cycles available to the application. In-
lining messages works by using the CPU to read the data instead of the NIC [25], which
saves an extra PCIE DMA transaction. It therefore is only reasonable to enable inlining for
smaller message sizes, as otherwise the time saved, by avoiding the PCIE DMA transaction,
does not make up for the cost of involving the CPU.

We tested the performance impact of message inlining. The averaged results across ten
benchmarks each, comparing no inlining whatsoever to inlining all messages, are shown
in the diagrams of figure 3. Inlining is only supported up to a certain size of message
but involves the CPU more [?5]. Enabling this feature is rather simple, as we do send
buffers of identical capacity with each message, because of the zero-buffer-copy approach,
this means, that either all messages, or no messages, will be inlined. Inlining didn’t show
a notable difference in the benchmark results, with both throughput and latency falling
within margin of error.

800

700

600

500

400

300

Processed rounds [1/s]

200

Figure 5.5.: Measuring performance impact of inlining messages using the replicated system
benchmark. These benchmarks are identical to the system benchmarks shown in 630,
except that the buffer capacities are reduced to 512 bytes. This is to allow direct com-

5. EVALUATION

4000

8000 800
7000 700
T —1 6000 600
Q
5000 = 500
@ 0}
a3
E B
s 5
4000 & £ 400
-
3000 2 300
I
2000 200
— 1000 100
0 0
1 2 3 4 s 6 7 8 9 10 12 3 4 s 6 7 8 9 10
(a) No inlining (b) Full inlining

parison between inlined buffers and sending the buffers normally.

8000

7000

I 6000

r 5000

Latency [ms

r 3000

2000

r 1000

55

6 Related Work

The advantages of RDMA over TCP inspire multiple exercises to make use of it. This can
be done in a more general approach like in this thesis, providing a framework to work
in, to transparently make use of RDMA. Other works choose an approach that includes
developing new technologies based on RDMA, which fully utilize RDMA’s features as part
of their design. Both strategies are useful to uncover the capabilities that RDMA can offer
in practise.

In the space of RDMA consensus protocols the focus of previous work has been to de-
velop protocols which utilize RDMA communication methods out of the box. As to fully
utilize RDMA, an argument can be made that, the communication protocol needs to be
designed with RDMA in mind. Some properties of RDMA can even be used to simplify
the protocol itself; as shown by Aguilera et al. [I].

6.1. DARE

DARE, proposed by Poke and Hoefler [23], is developed to make use of what RDMA has
to offer. Instead of just accelerating the communication rounds inside the BFT protocol,
they also made use of RDMA to speed up more processes related to the replication process
itself. Their consensus protocol, due to the consideration of RDMA as the communication
protocol from the beginning, is able to fully utilize RDMA and avoid the complications
outlined in this thesis. To circumvent the network delay their communication scheme is
synchronous.

6.2. FaRM

FaRM, short for Fast Remote Memory, is a distributed computing platform capable of Tun-
ning large scale networked key-value stores at incredible performance [7]. Their approach
places the entire key-value store across the main memory of all participating systems.
All the participants of their network form a shared address space of 2.8 TB of DRAM,
separated into 2 GB chunks addressed by a consistent hashing algorithm. To ensure con-
sistency they use transactions across the shared memory regions with logs and perform
regular backups to disk in case of'a crash.

They also provide a programming model which uses lock-free reads for maximal per-
formance where possible. It could be used to not only implement key-value stores but also
other memory intensive distributed services. The approach they use to relieve back pres-
sure applies two strategies. First, they poll the end of buffers posted for receives, which
are known to change when the write is complete. This allows them to use RDMA writes
without notification. Their send procedure is similar to the one presented in this the-

58

6.4. HIDDEN cosT oF RDMA

sis. Each sender knows the location of'a head pointer, similar to the number of prepared
bufters, of the receiver and never writes over it [Z]. The sender needs regular updates of
the receivers head pointer to be able to keep sending. Their approach allows the receiver
to directly write its own head pointer position into the senders memory with RDMA.

6.3. RDMA for Agreement

Aguilera et al. [} have shown that, using the specifics of RDMA, a consensus protocol with
tolerance n > 2f 4 1 can be devised. Though this metric is also achievable through other
means, like mapping Byzantine faults to crash faults by providing additional safeties like
SGX [4], they make use of the shared-memory and dynamic permissions [l]. Their goal is
to create a resilient and performant consensus protocol. Using the dynamic permissions
of RDMA, they can prevent Byzantine processes from overwriting memory. To do so they
apply a model, very close to the one we have implemented and devised, which shares
similarities with DARE and Paxos [, B]. The Message-and-Memory (M&M) model both
allows for high performance through asynchronous access as well as robustness to failures

[,
6.4. Hidden cost of RDMA

Frey and Alonso [8] present the technology that is RDMA as the specific tool it is. Strongly
influencing the decisions made throughout this thesis, their benchmarks and general
guidelines have shaped parts of the flow control and memory management scheme. Sim-
ilarly arguing the necessary structure to utilize the feature set and advantages of RDMA,
Kalia et al. [[3] lay out general guidelines to achieve high performance, through the use
of RDMA. More closely related to the topic of this thesis, Jalili et al. [IT] show the require-
ments for high performance state-machine replication. An instance of such high perfor-
mance state replication making use of RDMA has already been mentioned in DARE Bl

7 Conclusion

Using a faster communication protocol is only as efficient as the additional logic it re-
quires to make it work. Any communication protocol for networked computers is going
to require some form of flow control, as reserving memory for user space applications to
receive data into, or the memory the operating system or network card require to initially
receive data into is going to present a bottleneck. One that, if not handled properly, will
mean that messages will be lost. In the case of RDMA, this buffer does not lie within the
network card or operating system, but the same problem exists. There are multiple possi-
ble flow control algorithms, with different scopes. Just for solving the problem presented
by back pressure, many algorithms and naive solutions can be used. The performance of
each solution also heavily depends on the application and application’s communication
model. From simple one way file transfers to BFT algorithms, different solutions come
with advantages and disadvantages in performance, memory footprint, ease of implemen-
tation and safety.

To achieve the highest performance the system has to utilize its subsystems to its fullest.
This includes technologies like DMA, which allow the CPU to perform work, whilst other
parts of the system perform I/O actions independently, and in parallel. Data copies con-
sume processor cycles without advancing the logic of the software, the user of a system
wants to run. RDMA presents the networked version of this strategy, offering an oppor-
tunity to minimize the amount of buffer copies, freeing the CPU for other tasks.

RDMA is a technology, which if combined with a flow control scheme efficient for the
application, can offer a performance increase for almost all types of applications. If the
hardware and conditions necessary for its application are present, it not only speeds up
the data transfer itself, but also relieves stress on the CPU. This can be taken to an extreme
if the communication protocol is developed with RDMA in mind, with its asynchronous
nature. At this point, it seems that RDMA, however, can not fully replace traditional com-
munication protocols like TCP/IP, not only due to the necessary hardware but also the
required flow control which needs to be designed and tweaked for each use case.

One limiting factor in measuring the performance of RDMA in a networked protocol
is that any free CPU cycles can always be used to copy buffers. This means that if the CPU
is able to do the buffer copies in between the intended task the system has to perform the
performance gain of avoiding any buffer copies becomes unnoticeable, making utilizing
RDMA to it’s fullest only possible in network bottlenecked use cases.

This means that RDMA, as such, does not have to be the universal communication
protocol, like TCP, as its performance strongly depends on the use case at hand.

60

The results, found in this thesis, signal that further integration of RDMA in the BFT
framework Reptor is required to utilize all of its advantages at highest efficiency. The
implemented memory management and flow control should be able to form a basis for
future work, further optimizing the interplay of Reptor’s layers to make use of RDMA’s
feature set.

Bibliography

[

2]

3]

[4]

[9]

M. K. Aguilera, N. Ben-David, R. Guerraoui, V. Marathe, and I. Zablotchi. The impact
of rdma on agreement. May 2019.

AZUL Systems. Understaning Java Garbage Collection, 2014. URL https://www.azul.
com/files/Understanding_Java_Garbage_Collection_v4.pdf.

J. Behl, T. Distler, and R. Kapitza. Consensus-oriented parallelization: How to earn
your first million. In Proceedings of the 16th Annual Middleware Conference, pages 173
184. ACM, 2015.

J. Behl, T. Distler, and R. Kapitza. Hybrids on steroids: Sgx-based high performance
bft. In Proceedings of the Twelfth European Conference on Computer Systems, EuroSys '17,
pages 222-237, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4938-3. doi: 10.1145/
3064176.3064213. URL http://doi.acm.orq/10.1145/3064176.3064213.

M. Castro and B. Liskov. Practical byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst., 20(4):398-461, Nov. 2002. ISSN 0734-2071. doi: 10.1145/
571637.571640. URL http://doi.acm.org/10.1145/571637.571640.

DiSNI. Direct storage and networking interface, 2019. URL https://github.com/
zrlio/disnil.

A. Dragojevi¢, D. Narayanan, M. Castro, and O. Hodson. Farm: Fast remote mem-
ory. In 11th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14), pages 401-414, Seattle, WA, 2014. USENIX Association. ISBN 978-1-
931971-09-6. URL https://www.usenix.org/conference/nsdil4/technical-
sessions/dragoijevi{\unhbox\voidb@x\bgroup\let\unhbox\voidb@x\setbox\
@tempboxa\hbox{c\global\mathchardet\accentUspacefactor\spacetactor\
accentl9c\egroup\spacetactor\accent@spacetactory.

P. W. Frey and G. Alonso. Minimizing the hidden cost of rdma. In 2009 29th IEEE
International Conference on Distributed Computing Systems, pages 553-560, June 2009. doi:
10.1109/ICDCS.2009.32.

E. Gafni and L. Lamport. Disk paxos. In Proceedings of the 14th International Conference
on Distributed Computing, DISC '00, pages 330-344, London, UK, UK, 2000. Springer-
Verlag. ISBN 3-540-41143-7. URL http://dl.acm.org/citation.cfm?1d=645957.
h/5967.

https://www.azul.com/files/Understanding_Java_Garbage_Collection_v4.pdf
https://www.azul.com/files/Understanding_Java_Garbage_Collection_v4.pdf
http://doi.acm.org/10.1145/3064176.3064213
http://doi.acm.org/10.1145/571637.571640
https://github.com/zrlio/disni
https://github.com/zrlio/disni
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi{\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {c\global \mathchardef \accent@spacefactor \spacefactor }\accent 19 c\egroup \spacefactor \accent@spacefactor }
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi{\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {c\global \mathchardef \accent@spacefactor \spacefactor }\accent 19 c\egroup \spacefactor \accent@spacefactor }
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi{\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {c\global \mathchardef \accent@spacefactor \spacefactor }\accent 19 c\egroup \spacefactor \accent@spacefactor }
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi{\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {c\global \mathchardef \accent@spacefactor \spacefactor }\accent 19 c\egroup \spacefactor \accent@spacefactor }
http://dl.acm.org/citation.cfm?id=645957.675967
http://dl.acm.org/citation.cfm?id=645957.675967

62

BIBLIOGRAPHY

[10] M. B. (https://stackoverflow.com/users/16883/michael borgwardt). Extending byte-
buffer class. Stack Overflow. URL https://stackoverflow.com/a/624508. version:
2009-03-08.

[11] P.Jalili, M. Primi, and F. Pedone. High performance state-machine replication. pages
454-465, 06 2011. doi: 10.1109/DSN.2011.5958258.

[12] JUnit. junit4, June 2019. URL https://github.com/junit-team/junit4.

[13] A. Kalia, M. Kaminsky, and D. G. Andersen. Design guidelines for high perfor-
mance RDMA systems. In 2016 USENIX Annual Technical Conference (USENIX ATC
16), pages 437-450, Denver, CO, 2016. USENIX Association. ISBN 978-1-931971-
30-0. URL https://www.usenix.org/conterence/atcle/technical-sessions/
presentation/kalia.

[14] R.Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva: Speculative byzantine
fault tolerance. SIGOPS Oper. Syst. Rev., 41(6):45-58, Oct. 2007. ISSN 0163-5980. doi:
10.1145/1323293.1294267. URL http://doi.acm.orq/10.1145/1323293.1294267.

[15] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 4(3):382-401, 1982.

[16] Mellanox Technologies. Security in Mellanox Technologies InfiniBand Fabrics Rev
1.0, 2012. URL https://www.mellanox.com/related-docs/whitepapers/WP_
Secuirty_In_InfiniBand_Fabrics_Final.pdf.

[17] Mellanox Technologies. ConnectX®-3 Pro VPI Single and Dual QSFP+ Port Adapter Card
User Manual Rev 1.5, December 2015.

[18] Mellanox Technologies. = RDMA Aware Networks Programming User Manual Rev
1.7, May 2015. URL https://www.mellanox.com/related-docs/prod_software/
RDMA_Aware_Programming_user_manual.pdt.

[19] Mellanox Technologies. RoCE vs. iWARP Competitive Analysis, February 2017.

[20] I. Messadi. Low latency byzantine agreement using rdma. Master’s thesis, November
2017.

[21] OpenFabrics. Ofed for linux. https://www.openfabrics.org/ofed-for-linux/, 2019.

[22] Oracle. Selector (Java Platform SE 8), 2019. URL https://docs.oracle.com/javase/
8/docs/api/java/nio/channels/Selector.html.

[23] M. Poke and T. Hoefler. Dare: High-performance state machine replication on rdma
networks. In Proceedings of the 24th International Symposium on High-Performance Parallel
and Distributed Computing, pages 107-118. ACM, 2015.

[24] J. Postel. Transmission Control Protocol, September 1981. URL https://tools.iett.
org/ric/ric793.txt.

https://stackoverflow.com/a/624508
https://github.com/junit-team/junit4
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
http://doi.acm.org/10.1145/1323293.1294267
https://www.mellanox.com/related-docs/whitepapers/WP_Secuirty_In_InfiniBand_Fabrics_Final.pdf
https://www.mellanox.com/related-docs/whitepapers/WP_Secuirty_In_InfiniBand_Fabrics_Final.pdf
https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/Selector.html
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/Selector.html
https://tools.ietf.org/rfc/rfc793.txt
https://tools.ietf.org/rfc/rfc793.txt

BIBLIOGRAPHY 63

[25] RDMAmojo. ibv_post_send(),2019. URL https: //www.rdmamojo.com/2013/01/26/
1bv_post_send/.

[26] S. Riisch, I. Messadi, and R. Kapitza. Towards low-latency byzantine agreement pro-
tocols using rdma. In Proceedings of the 1st Workshop on Byzantine Consensus and Re-
silient Blockchains, BCRB’18, Luxemburg, jun 2018. URL https://www.ibr.cs.tu-
bs.de/users/ruesch/papers/ruesch-bcrbl8.pdt.

[27] P. Stuedi, B. Metzler, and A. Trivedi. jverbs: Ultra-low latency for data center appli-
cations. In Proceedings of the 4th Annual Symposium on Cloud Computing, SOCC 13,
pages 10:1-10:14, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2428-1. doi:
10.1145/2523616.2523631. URL http://doi.acm.orqg/10.1145/2523616.2523631.

[28] S. Tsai and Y. Zhang. A double-edged sword: Security threats and opportunities
in one-sided network communication. CoRR, abs/1903.09355, 2019. URL http:
//arxiv.org/abs/1903.09355.

[29] D. Weiss and S. Osiski. JUnitBenchmarks, August 2013. @ URL https://
mvnrepository.com/artitact/com.carrotsearch/junit-benchmarks/0.7.2.

https://www.rdmamojo.com/2013/01/26/ibv_post_send/
https://www.rdmamojo.com/2013/01/26/ibv_post_send/
https://www.ibr.cs.tu-bs.de/users/ruesch/papers/ruesch-bcrb18.pdf
https://www.ibr.cs.tu-bs.de/users/ruesch/papers/ruesch-bcrb18.pdf
http://doi.acm.org/10.1145/2523616.2523631
http://arxiv.org/abs/1903.09355
http://arxiv.org/abs/1903.09355
https://mvnrepository.com/artifact/com.carrotsearch/junit-benchmarks/0.7.2
https://mvnrepository.com/artifact/com.carrotsearch/junit-benchmarks/0.7.2

A Contents of the CD

The CD included with the thesis is structured into the following folders:

m ba-rdma-reptor

This folder contains the documents related to the thesis document itself as well as
configuration files, log files and benchmark results. It also contains a digital copy
of this thesis. The ba-rdma-reptordirectory also contains documented scripts used
to start, evaluate and visualize the benchmarks shown in this thesis.

m disni-hybster (git bundle)

The bundle disni-hybster is a git repository. There are multiple branches available
showing different implementation efforts and philosophies. The two branches de-
veloped during this thesis are wrapper_patch and direct_patch. The direct patch
is what was used for further development throughout this thesis on the rdma-hybster
repository. The philosophy was to port changes from the pre-existing RUBIN im-
plementation directly on the DiSNI version 2.0 source.

Before this was undertaken we aimed to instead change RUBIN into a wrapper
around the DiSNI library, starting from version 2.0 to make upgrading DiSNI ver-
sion easier in the future. Due to time constraints, this was stopped in favour of the
direct patch attempt.

» rdma-hybster (git bundle)

Contains the implementation of RUBIN in Reptor extended throughout this thesis.
The branches map to different stages of development:

» master: This branch represents the baseline from the previous implementa-
tion of RUBIN in Reptor.

» markus-becker-2019-ba: This branch contains the progress of implementing
the DiSNI wrapper in Reptor.

= markus-becker-2019-ba-direct: This branch is the most stable version of
the implementation presented in this thesis.

» markus-becker-2019-ba-direct-dev: Additional performance tweaks and
more finely granulated commits to document the implementation process and
optimize performance.

B JUnit benchmark

package reptor.distrbt.common.data;

import com.carrotsearch.junitbenchmarks.AbstractBenchmark;
import com.carrotsearch. junitbenchmarks.BenchmarkOptions;
import org.junit.Before;

import org.junit.Test;

import java.nio.ByteBuffer;

@BenchmarkOptions (benchmarkRounds=20)
public class MemoryManagementBenchmarks extends AbstractBenchmark {

public static final int FULL_REPETITIONS 100;
public static final int DEFAULT_LENGTH = 1_000;
public static final int DEFAULT_CAPACITY 1024 * 1024; // 1 MB

protected ManagedBufferRing allocRing;

@Before
public void init() {
allocRing = new ManagedBufferRing (DEFAULT_LENGTH, DEFAULT_CAPACITY);

@Test
public void fullAllocationRing() {
for (int j = 0; j < DEFAULT_LENGTH: j++) {
allocRing.next();

@Test
public void fullAllocationNative() {
for (int j = 0; j < DEFAULT_LENGTH; j++) {
ByteBuffer.allocateDirect (DEFAULT_CAPACITY);

68

@Test
public void manyFullAllocationsRingVariable() {
ManagedBuffer current;
for (int i = 0; i < DEFAULT_LENGTH * FULL_REPETITIONS; i++) {
current = allocRing.next();
current.asByteBuffer() .put ((byte)1);
current. free();

@Test
public void manyFullAllocationsRingAnonymous() {
for (int i = 0; i < DEFAULT_LENGTH * FULL_REPETITIONS; i++) {
allocRing.next().free();

@Test
public void manyFullAllocationsNativeAnonymous() {
for (int i = 0; i < DEFAULT_LENGTH * FULL_REPETITIONS; i++) {
ByteBuffer.allocateDirect (DEFAULT_CAPACITY);

@Test
public void manyFullAllocationsNativeVariable() {
ByteBuffer current;
for (int i = 0; i < DEFAULT_LENGTH * FULL_REPETITIONS; i++) {
current = ByteBuffer.allocateDirect(DEFAULT_CAPACITY);
current.put ((byte)1);

	Introduction
	Thesis outline

	Background
	Remote Direct Memory Access
	I/O buffering
	Requirements
	DiSNI Java library
	Connections

	Byzantine Fault Tolerance
	Failure model
	BFT stages
	Application
	Deployment environment

	Reptor
	Choice of framework
	Layout of Reptor

	RUBIN
	Java NIO Selector
	Implementation

	Design
	Memory management
	Smallest unit of memory management
	Management structures for memory

	Flow Control
	Necessity of Flow Control
	Existing Flow Control
	Requirements of new Flow Control
	Exploration of solutions
	Scope of implementation

	Security Analysis

	Implementation
	DiSNI Upgrade
	Existing implementation
	Porting Reptor to DiSNI version 2.0

	Zero Buffer Copy
	Implemented memory management structures
	Extending ByteBuffer
	Buffer Solution

	Receive Window
	Flow Control algorithm

	Testing
	Expectations

	Discussion
	Availability of RNICs
	RDMA for consensus

	Evaluation
	JUnit benchmarks
	Connection test
	System benchmark
	RDMA optimizations
	Doorbell batching
	Message inlining

	Related Work
	DARE
	FaRM
	RDMA for Agreement
	Hidden cost of RDMA

	Conclusion
	Bibliography
	Contents of the CD
	JUnit benchmark

