
Microsecond Replication for
Microsecond Applications

Markus Becker
TU Braunschweig

Braunschweig, Germany
markus.becker@tu-braunschweig.de

Abstract
In the space of cloud and datacenter, computing applications
are expected to have extremely high availability and low
latency. High availability is achieved by running applica-
tions on many machines with the ability to tolerate failures
gracefully. Latency can be lowered by load-balancing re-
quests among multiple machines as well. To achieve this,
multiple approaches have been developed. On the one hand,
there is a demand to enable already existing established cen-
tralized applications to run with a higher degree of safety.
In these scenarios, minimizing added overhead is critical.
On the other hand, newly developed applications can take
advantage of the unique runtime environment present in
datacenters. Potentially lowering overhead when specially
designed for this environment. This runtime environment
can both be a blessing and a curse as parallel execution al-
lows for higher throughput and lower latency but requires
consensus protocols to ensure consistency across different
machines. With new promising networking technology like
Remote Direct Memory Access new application types be-
come realizable. In this essay, we discuss two state-of-the-art
systems. Mu is a State Machine Replication system allowing
existing applications to run in such an environment while
adding as little latency to each request. Hermes is a protocol,
which can be used to build applications taking advantage of
the highly parallel environment without adding overheads
commonly present in this space.

ACM Reference Format:
Markus Becker. 2020. Microsecond Replication for Microsecond Ap-
plications. In Distributed Systems: Uncovering distributed computing
principles. ACM, New York, NY, USA, 7 pages.

1 Introduction
Microsecond applications are programs or services that re-
quire low-latency responses and actions to be taken. Espe-
cially in financial high-frequency trading, embedded com-
puting and cloud micro-services the duration between a user
requesting an action to be taken and the action being under-
taken by the back-end is critical [1]. Once the request has
reached the target network the required latency often lies in
the range of a few microseconds. Almost equally important

Uncovering distributed computing principles, 2020, Braunschweig
2020.

to these kinds of services is availability, both operationally
and from a users perspective. To achieve high availability
a common practice is to replicate servers responsible for
handling users’ requests to allow for fail-over in case of a
software crash or hardware malfunction [1]. Doing so, how-
ever, requires the service provider to perform additional
work to synchronize and manage the different replicated
services to guarantee they perform actions as if only a single
one of them were running to avoid data loss on failure or
other non-consistent behavior. Specifically, we are looking
for strong-consistency in replicated microsecond applica-
tions to enable fast fail-over [1, 2]. The scope of replication
protocols change depending on their goals. Depending on
the replication protocol and the application, integrating repli-
cation can require only little change to the application[1].
To goal of a State Machine Replication System is being al-
most plug-and-play. General replication protocols, instead,
describe an entire communication protocol, leaving devel-
opers to implement the communication in the applications
directly.

A common general application type that profits from this
setup are distributed datastores. Often taking the form of
key-value stores that aim to offer fast reads and writes with
strong-consistency [3]. This aim comes from the fact that a
single networked machine is often incapable to handle all
simultaneous requests in the world of micro-services and
growing number of distributed users [2]. Analysis of those
systems is, however, often limited to throughput metrics,
considering latency as a secondary goal or simply ignoring
that metric [4].
Strong-consistency in a distributed environment can be

achieved by applying consensus protocols. These protocols
are historically considered to be slow, because of a lot of
added communication overhead, therefore, need to be chosen
and applied wisely to be able to use them in microsecond
applications.

2 Background
Consensus Protocols Many parts of current computer sys-
tems are not reliable or can be attacked. Processors can crash
and malfunction, networks can fail and packages can be lost.
An Agreement or Consensus Protocol describes a mecha-
nism by which a group of participants can share a state while



Uncovering distributed computing principles, 2020, Braunschweig Markus Becker

allowing for failures to occur. The properties a consensus
protocol ensures are:

1. Safety: Participants receive the identical data without
errors and agree on the length of values. Therefore,
there is no ambiguity on the completeness of the data
as it is being received.

2. Liveness: Participants are guaranteed to receive any
data eventually.

Strong-consistency is a stronger guarantee requiring that
participants further agree on the order of values and have the
exact same state any other does. This follows from the values
being linearizable [5], which can be performed by some form
of leader to decide the order of values, but alternate options
are also explored. A part of any consensus protocol is also the
consideration of possible fault modes. For this essay, unless
stated differently, we assume that messages are error-free,
such that if a message arrives at its destination it arrives
without bit flips. Furthermore, while we allow for so-called
Crash Faults, where a host becomes unable to operate at all
in case of failure, we do not consider Byzantine Faults which
allows a host to behave arbitrarily after a fault.

StateMachineReplication StateMachine Replication (SMR)
describes a process by which a service can be replicated
across multiple physical machines. The goal is to achieve
higher availability by allowing the continued operation even
if some machines fail. Furthermore, SMR is able to provide
strong-consistency for any application that is a determinis-
tic state machine. The central step in most SMRs consists
of providing each machine, called replica, an identical copy
of an application and some configuration data [1, 5]. Each
machine then has to keep a log of all requests and performs
the corresponding actions in order once consensus on the
log is achieved. To ensure strong-consistency the logs of all
replicas need to be identical, including the order. A consen-
sus protocol can be used to perform the agreement on the
log across all replicas, and, therefore, the performance of it
contributes greatly to the overall performance, as it describes
how the data is shared and how much communication has
to occur.

Another desirable feature of SMR is that replicas can fur-
ther replicate themselves to more physical machines by copy-
ing the initial state machine, their state and the necessary
configuration to new machines, provided the log can be
maintained during this operation [1].

Remote Direct Memory Access Remote Direct Memory
Access (RDMA) is a network card hardware feature that al-
lows networked machines to read and write into each other’s
memory directly without the involvement of the CPU of ei-
ther machine. RDMA also commonly is performed over very
fast and already low latency connections [6]. Data trans-
ferred by means of RDMA are received by the network card
configured to immediately write to memory. Reads, similarly,

instruct the remote network card to respond with data found
in requested memory locations, which the local network card
writes into local memory directly. There are several modes
of operation, allowing for the optional generation of notifi-
cations. Before any data can be transferred using RDMA the
network cards and Memory Region (MR) access permissions
need to be configured. These permissions can be revoked
and changed throughout operations [1]. The endpoints on
the machines are called Queue Pairs (QPs) [1, 6]. Applica-
tions can then post Work Requests (WRs) on the Queue Pair
which adds them to the Completion Queue (CQ). The RDMA
hardware then asynchronously performs the Work Requests
and adds a corresponding Work Completion event to the
Completion Queue. One-sided RDMA operations do not gen-
erate Work Completion events and therefore do not require
any further communication after the original Work Request
was performed. For that reason, one-sided operations are
often measurably faster but require more consideration as
failures and data races are harder to detect [7].

3 Motivation
Ideally, any already low-latency deterministic application
could be wrapped as a state machine and replicated across
multiple hosts to achieve very high availability. The problem
is that to allow fail-over we need to ensure that all replicas are
running identically, which means that a consensus has to be
reached as to which requests to process, and in which order.
Furthermore, the required steps to introduce the necessary
additional communication to the application, as well as the
overhead added by this consensus protocol and the latency
of a fail-over in case of a crash have to be investigated.

This is where different consensus protocols and State Ma-
chine Replications systems offer varying features. The pur-
pose of an SMR system is that any application, that can be
turned into a state machine, which often is the case for exist-
ing centralized deterministic client-server applications, can
be replicated and profit from the added fault-tolerance and
availability.

When building an application from the ground up taking
a consensus protocol with features and optimizations criti-
cal for the specific application in mind can offer additional
performance.
Most state-of-the-art RDMA-based replication protocols

aremeasured in reliable datastore settings [3]. Figure 1 shows
how a low latency deterministic application, that would or-
dinarily run on a single machine with the risk of crashing
and being unavailable, can instead be spread over an arbi-
trary number of replicas. Users communicate with a leader
replica, all other replicas become follower replicas. While the
exact discussion of how this can be achieved follows later,
and differs from one protocol to another, it follows from the
figure that there is a need to find a consensus between the
followers. To find the most general approach one would need



Microsecond Replication for Microsecond Applications Uncovering distributed computing principles, 2020, Braunschweig

consensus

applicationclient

invocation

response

application

consensus
replication

propose
ok apply

ok

leader follower

Figure 1.Application architecture inMu redirecting commu-
nication to a leader, which in turn replicates to all followers
to allow for failures [1].

to abstract away all communication between a client and
an application. If done correctly the clients can be unaware
whether they are talking to a single machine that never fails
or the leader of an SMR System.

4 Related Works
There are several different approaches when trying to pro-
vide State Machine Replication using different consensus
algorithms. Each provides a different set of guarantees while
having the common goal to ensure safety and some form of
liveness. The exact set of features and exact description of
what a failure may entail and what liveness is to be expected
are protocol-specific [8].
The goal of all the following families of protocols is to

provide consensus on a set of values, where consensus in
general means:

1. A valid value is chosen.
2. A single value is chosen.
3. Only a chosen value is ever committed.
We still assume to have a reliable connection, meaning

messages may be slowed down, may be duplicated, connec-
tions might drop entirely, but data that is received is never
corrupted [8] and was sent from, at least at the time, a cor-
rectly operating machine.

Paxos Paxos is the golden standard in providing strong-
consistency, being one of the simplest crash fault-tolerant
distributed system. It is criticized due to its slow throughput
and high communication overhead [1]. Paxos is based on
phases which each require all machines to communicate in
multiple rounds for each value [8]. Due to this, it is rarely
used in practice without further optimizations.

The main downsides of Paxos are that reads require com-
munication between all replicas and writes have to make
multiple round-trips throughout the network. Another down-
side of Paxos is that it requires the same high overhead even
if no failure occurred [3].

ZAB ZAB is a state-of-the-art strong-consistent datastore
finding application as the internal consensus protocol used in
the Apache ZooKeeper service [9]. Its main performance gain

over Paxos is that reads can be performed by any replica with-
out having to communicate with any other replica. Writes,
however, have to be serialized by a leader. The leader orders
write requests, then proposes them to the followers which
respond with an Ack and the leader sends another message
committing to the write, once a majority is reached.

CRAQ CRAQ is also a state-of-the-art strong-consistent
datastore. It tries to improve on the shortcomings of ZAB by
reducing the bottleneck the single leader represents when it
comes to writes. The essential change is that the replicas are
linked in a chain and writes propagate the system from one
end to the other. This architecture requires each replica only
to write to one other replica, thus spreading the work-load
over all the replicas more evenly.

DARE DARE is the first SMR system to use RDMA [10].
It was specifically developed for RDMA [11] to provide a
low-latency and high-throughput advantage over similar
SMR systems. This specialization enables the use of features
present in RDMA and further advantages over just emulating
traditional communication methods over a faster network
connection [11].

HovercRaft HovercRaft is a scalable low-latency general-
purpose scalable State Machine Replication system based
on the Raft protocol [12] aimed at cloud deployments. Key
features are the use of specialized hardware to bypass the
CPU and achieving a speed-up over the non-replicated de-
ployments by applying a load-balancer. Like Raft, Hover-
cRaft uses the leader with which the clients communicate
but tries to solve the scalability problem by accelerating
the internal network by using an ASIC [12]. This custom-
hardware-approach combined with a well load-balanced sys-
tem achieves lower latency at higher node count, while avoid-
ing the usual leader bottleneck.

APUS APUS is a scalable RDMA-based Paxos protocol.
It uses State Machine Replication to enforce the same in-
puts for a program which runs replicated on multiple hosts
[13]. APUS was the first RDMA-based Paxos protocol, which
showed that RDMA was able to increase the performance
of SMRs if they could be adjusted to run using the RDMA
verbs.

5 Design
State Machine Replication systems aim to be deployable for
arbitrary applications, provided they can be partitioned into
a client and deterministic back-end. This is often the case for
centralized server applications that perform actions based on
incoming requests. Mu enables running such an application
in a replicated fashion, providing higher availability and
fault-tolerance, while trying to reduce the added overhead,
especially replication latency. Furthermore, the fail-over time
is also incredibly critical. One of the main causes of latency



Uncovering distributed computing principles, 2020, Braunschweig Markus Becker

client

ok execute

response

request
capture

request
inject

request

application 

propose

application 

follower

replication
plane

background
plane

RDMA
comm

QPs

QPs

RDMA

RDMA

leader

RDMA
comm

QPs

QPs

logging

v1 v2local log

perm mgmt

perms 1 0 0

proposalNr

replicator

7

permissions

perm management

1 0 0

curWriter 1 curWriter 1

leader election

heartbeat
leader 1

42

leader elect.

leader 1

replayer

v1 v2local log

ok

Figure 2. RDMA connected leader and follower communication as well as application architecture. This is the more detailed
version of the general replicated application structure shown in figure 1

spikes come from the timeout that replicas need to have to
detect the leader’s failure, followed by the time it takes to
determine and switch to the new leader.

Hermes, on the other hand, aims to provide a membership-
based replication protocol with incredibly fast reads and
writes without requiring a leader which may bottleneck a
system with many replicas. The goal is to reduce overheads
and enable greater parallelism, at the cost of a more involved
integration into applications.

5.1 Mu
Mu aims to make use of the low latency of RDMA one-sided
operations while having a very light-weight failure-detection
mechanism to speed up SMR as much as possible. Mu’s ar-
chitecture uses SMR to create replicas. One is chosen as
the leader, having additional responsibilities. The remaining
replicas default to being followers. Client applications are
then changed to contact the leader with all of their requests.
The requests are abstracted as buffers. The leader makes
decisions about the ordering of the requests and then writes
the request buffers directly into the memory of all followers.
This also means that every request has to enter the network
of replicas through the leader. Given that the write-access
to the followers’ logs is exclusive to the leader, the leader
can assume consensus after having successfully written the
request into a majority of the followers. In the meantime,
the followers are using one-sided RDMA operations to read
a counter value on the leader to ensure the connection is
operational and the leader hasn’t crashed.

The architecture and RDMA connection pairs are shown
in figure 2. Each follower has a separate RDMAQueue-Pair to
read only the heartbeat of the leader. This heartbeat counter
is read very frequently and indicates a crash if not incre-
mented regularly. This is a very simple but sufficient way to
perform this check. The network delay is notably irrelevant

as long as the delay between reads doesn’t change signif-
icantly, as the heartbeat value will still have incremented.
This allows Mu to use aggressively low timeout values, re-
ducing the time it takes to detect a failed leader [1]. The
other Queue-Pair is controlled by the follower to only allow
the active leader to write into the correct memory region.
Mu makes use of RDMA’s permission management system
to ensure that only the leader is able to write requests into
their log. Once a follower is notified of a completed RDMA
write operation into their own memory by the leader they
hand off the memory that makes up the original client’s re-
quest to the replicated state machine application. Critically
this is done in the order in which the requests are added to
the log, making sure each followers state is identical, thus,
strongly-consistent. This requires that the next message is
only written out to followers if the preceding message was
already accepted by the majority of followers, otherwise, a
crash of the leader would leave the followers in an inconsis-
tent state.

Figure 3. Permission change latency methods



Microsecond Replication for Microsecond Applications Uncovering distributed computing principles, 2020, Braunschweig

RDMA offers multiple methods to manage access permis-
sions. Aguilera et al. [1] survey the available methods with
respect to the latency at which a permission change can be
performed, shown in figure 3. The three compared permis-
sion change mechanics are:

1. QP Flags: Changing the access permission flags on the
Queue Pair itself.

2. QP State: This operation cycles the Queue Pair through
its initialization states again, resetting access permis-
sions in the process.

3. MR Rereg: On Memory Region registration the access
permissions can be specified. Once a Memory Region
is unregistered that memory is still accessible to the
process but the network card cannot read or write
to that Memory Region anymore. But the host can
re-register that Memory Region again, with different
access permissions on the already existing Queue Pair.
This is the fastest mechanism as the Queue Pair itself
doesn’t have to be changed and the memory allocation
itself doesn’t have to re-allocated.

They note that hardware manufacturers could reduce the
permission change latency even further. Once a follower isn’t
able to verify the leader’s correct operation, either because of
an RDMA connection crash or the stagnation of the heartbeat
counter of the leader they withdraw the leader’s permission
to write into their memory.
The leader election process is very simple in Mu: each

replica is initialized with a unique numeric id, and assumes
the replica with the lowest id that hasn’t failed is the leader. If
the client then tries to continue to communicate with the old
leader it will either not be able to establish the connections
(due to a complete crash) or at least not receive the “ok”
message because the leader will fail in at least one write to
the followers due to the changed permissions. The client is
then expected to find the new leader and send future requests
to that replica. How the client performs this is dependent on
the application, but usually includes keeping a list of replicas
and use them in order as they timeout.

Mu shares a lot of similarities with DARE with some addi-
tional optimizations in the use of RDMA, using fewer opera-
tions, and lighter leader election process [1]. In DARE the
leader election process is started by a follower suspecting a
leader-failure and starts a process to elect itself as the new
leader [10, 11]. This leads to more communication rounds,
and, therefore, a higher overhead than what Mu sets out to
achieve.

5.2 Hermes
Hermes is a broadcast-based, invalidating replication pro-
tocol [3]. It provides strong-consistency, as this allows an
intuitive and safer usage of datastores [3], but tries to avoid
the low-performance pitfalls of other implementations, like
Paxos or ZAB. The assumption used for optimization is that

Figure 4. A successful write in Hermes. [3]

faults are not the common-case performance. Furthermore,
Hermes aims to reduce inter-replica communication for reads
and writes during non-failure operation. Similarly to ZAB,
reads on any object can be locally handled at any replica
without any further communication in the default case. The
important additional feature of Hermes is that writes can
also be performed by any replica.

Unlike a leader in ZAB or Mu, any replica can become the
Coordinator for a write. Upon receiving a write request the
replica broadcasts a message invalidating a stored object on
other replicas and becomes the Coordinator for that write.
The coordinator of a write attaches a logical timestamp to the
Invalidation to allow ordering of Invalidations and ensure
that a newerwrite isn’t overwrittenwith an older one. In case
two writes happen on separate replicas at the same logical
timestamp the one with the lower node id wins and the
write overwrites the one with the higher node id. A replica
receiving an Invalidation with a timestamp higher than its
current timestamp will respond with an Ack and update
its timestamp as well as the object’s value. The Coordinator
commits a write once it has received amajority of Acks. Once
a replica receives an Invalidation for a stored object it will
not serve that object until it has received a validation from
the Coordinator that a majority of followers have responded
with an Ack. This process is shown in figure 4. This fault-free
operation makes Hermes:

1. Decentralized: Any replica can accept writes for any
object at any time. This reduces required network hops
drastically and allows to load-balance writes [3] with
no single bottlenecked machine.

2. Fully concurrent:Writes are processed in parallel.With-
out requiring a leader any number of objects could be
written to in parallel.

3. Fast: Writes never abort and commit in one network
round-trip. This also minimizes the write latency as
after a majority of Acks are received the write can be
reported as successfully performed.

In case of a failure on the Coordinator during a write a
majority of replicas will be left in an Invalidated state for
the written object. This Invalid state can be resolved by a



Uncovering distributed computing principles, 2020, Braunschweig Markus Becker

write replay which is started once a read is performed on
a follower with an invalid state. This follower becomes the
Coordinator for a write with the stale object’s data and failed
writes timestamp. If it manages to receive a majority of Acks
it can send Validations for that object (in the old state) and
the Invalidated state of the object has been resolved. The
failed write was undone by a write replay. The local data can
then be served to respond to the read which initiated the
write replay.

They present a high-performance RDMA-based reliable
Key-Value store using Hermes and their own RDMA RPC
library “Wings”, implementing the usual Key-Value store
API.

6 Evaluation
Mu was published by Aguilera et al. [1] in October 2020,
and was, therefore, able to be benchmarked against Hermes
directly which was published in March 2020 [3]. As Mu’s
main aim was to reduce latency it is not surprising to see
that in their main evaluation they achieve an incredibly low
latency as shown in figure 5. The application evaluated using
the Hermes protocol is HermesKV which is an in-memory
RDMA-based Key-Value Store by Katsarakis et al. [3]. It is the
same application used by Katsarakis et al. [3] to benchmark
Hermes themselves in figure 6, showing their throughput
beating CRAQ, another replication protocol, and ZAB, in
similar environments.

0.0

2.5

5.0

7.5

10.0

La
te

nc
y 

(μ
s)

1.4
0

1.3
4

1.6
8

1.6
8

5.1
5

4.5
5

6.8
0

6.8
6

Mu + HERD
Mu + LiQ
Mu + mcd

Mu + rds
DARE
Hermes

Apus+mcd
Apus+rds

Figure 5. Replication latency for several microsecond appli-
cations replicated with Mu compared to DARE KVS, Hermes
(specifically. HermesKV) as well as two KVS being replicated
with APUS, with cut off error-bars.

The other benchmarked applications replicated by Mu are
HERD [7], an RDMA-based Key-Value Store optimized for
throughput, Memcached, a distributed in-memory Key-Value
Store, Redis, in-memory Key-Value Store, and Liquibook an
order matching engine for financial exchange [1]. All the
applications were benchmarked on four nodes connected by
a 100Gbps Switch with Mellanox Connect-X 4 links able to
saturate the 100Gbps connection.

Most impressive is the small amount of changed lines
of code to make these application inter-operate with Mu,
having changed or added 228 lines of code at most [1]. This
is comparable to the integration necessary to use APUS,
however, Mu achieves better results than APUS, as APUS
also applies the heavier full Paxos protocol. APUS, on the
other hand, has more optional features that may be required
for other deployments that were enabled in this evaluation
and, therefore, APUS is not entirely replaceable by Mu.
The evaluation results clearly show that Mu performs

the replication with incredibly small overhead whilst only
requiring a small number of changes. HermesKV’s perfor-
mance in terms of latency is still competitive, however as it
is purpose-built for Hermes the results are less impressive
than the plug-and-play nature enabled by Mu’s SMR system.

One point of criticism on part of Mu, however, is that the
figure 5 error bars are cut off by the legend, and it, alongside
other plots contained in the paper are hard to read, if not
confusing.

1 5 20 50 75 100
% Write Ratio

0
200
400
600
800

1000
1200

MR
eq

ue
st

s /
 se

c

HermesKV
rCRAQ
rZAB

Figure 6. Hermes write rate performance study. [3]

The main advantage of Hermes over Mu is that Mu still
is potentially bottlenecked by the leader’s ability to seri-
alize and replicate the requests. This leads to the concern
because Mu will get slower with additional replicas more
than Hermes, as more communication is necessary which
has to be serialized by the leader. Thus, the network connec-
tion and speed of the leader in Mu can be the bottleneck for
throughput, whereas Hermes’ reads are mostly unaffected
by increased node number. Writes in Hermes also only re-
quire a single network round-trip, but can be started from
any replica in parallel. In its own benchmarks in figure 6,
HermesKV does only slightly outperform similar Key-Value
stores. Part of the explanation is that HermesKV’s imple-
mentation is less optimized than the other Key-Value stores,
as the focus was on Hermes the Replication Protocol itself.
At low write ratios, the advantage of non-blocking load-
balanced writes vanishes as compared to rCRAQ, and at high
write ratios, the throughput of all Key-Value stores decline.
Due to Hermes’ decentralized operation, it is likely to scale
better with more replicas when compared to other implemen-
tations at the same write-rate. It is also interesting to note



Microsecond Replication for Microsecond Applications Uncovering distributed computing principles, 2020, Braunschweig

that both rCRAQ (RDMA enabled CRAQ) and HermesKV
perform so similarly, as both successfully spread the work of
the bottlenecked write on the leader across all replicas using
different approaches.

7 Conclusion
While there is an abundance of replication protocols, some
of which were discussed in this essay, it is notable that each
of them has a very different set of guarantees and optimizes
for very specific application types and requirements. Fur-
thermore, I personally am surprised by the varying scope
of replication protocols: where Mu acts more like a plug-
and-play drop-in to enable the advantages of replication
with minimal downsides and overhead in any deterministic
application. Hermes, on the other hand, required to have Her-
mesKV built from the ground up, whereas Mu was able to be
dropped in the middle of existing applications’ client-server
architectures and still achieve incredible performance.
Hermes offers the trade-off of allowing to increase the

number of replicas if one is able to implement it, which
in the space of the datacenters is important as commodity
hardware is cheap but likely to fail and fault-tolerance is
incredibly important. One could argue that the few microsec-
onds advantage Mu has over Hermes are inconsequential
when considering the network delays between the end-user
and the datacenter.
This is all provided that one has access to the required

technologies, i.e. state-of-the-art network switches, mod-
ern RDMA enabled network interface cards as well as the
required fast system memory to have larger in-memory data-
stores. The arrival of those technologies in the end-user
space is unlikely to occur very soon. Therefore, the protocols
discussed are likely to stay in the datacenters for years to
come.

References
[1] M. K. Aguilera, N. Ben-David, R. Guerraoui, V. J. Marathe, A. Xygkis,

and I. Zablotchi, “Microsecond consensus for microsecond applica-
tions,” 2020.

[2] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding,
J. Ferris, A. Giardullo, S. Kulkarni, H. Li, M. Marchukov, D. Petrov,
L. Puzar, Y. J. Song, and V. Venkataramani, “TAO: Facebook’s
distributed data store for the social graph,” in 2013 USENIX Annual
Technical Conference (USENIX ATC 13). San Jose, CA: USENIX Asso-
ciation, Jun. 2013, pp. 49–60. [Online]. Available: https://www.usenix.
org/conference/atc13/technical-sessions/presentation/bronson

[3] A. Katsarakis, V. Gavrielatos, M. S. Katebzadeh, A. Joshi, A. Dragojevic,
B. Grot, and V. Nagarajan, “Hermes: A fast, fault-tolerant and
linearizable replication protocol,” Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, Mar 2020. [Online]. Available:
http://dx.doi.org/10.1145/3373376.3378496

[4] D. Skeen, “Nonblocking commit protocols,” in Proceedings of the
1981 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’81. New York, NY, USA: Association for
Computing Machinery, 1981, p. 133âĂŞ142. [Online]. Available:
https://doi.org/10.1145/582318.582339

[5] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness
condition for concurrent objects,” ACM Trans. Program. Lang.
Syst., vol. 12, no. 3, p. 463âĂŞ492, Jul. 1990. [Online]. Available:
https://doi.org/10.1145/78969.78972

[6] Mellanox, “Benefits of Remote Direct Memory Access Over Routed Fab-
rics,” Tech. Rep., 2018. [Online]. Available: https://www.mellanox.com/
related-docs/solutions/benefits-of-RDMA-over-routed-fabrics.pdf

[7] A. Kalia, M. Kaminsky, and D. G. Andersen, “Using rdma
efficiently for key-value services,” SIGCOMM Comput. Commun.
Rev., vol. 44, no. 4, p. 295âĂŞ306, Aug. 2014. [Online]. Available:
https://doi.org/10.1145/2740070.2626299

[8] L. Lamport, “Paxos made simple,” ACM SIGACT News (Distributed
Computing Column) 32, 4 (Whole Number 121, December 2001), pp.
51–58, December 2001. [Online]. Available: https://www.microsoft.
com/en-us/research/publication/paxos-made-simple/

[9] F. P. Junqueira, B. C. Reed, and M. Serafini, “Zab: High-
performance broadcast for primary-backup systems,” in Pro-
ceedings of the 2011 IEEE/IFIP 41st International Conference on
Dependable Systemsamp;Networks, ser. DSN ’11. USA: IEEE
Computer Society, 2011, p. 245âĂŞ256. [Online]. Available:
https://doi.org/10.1109/DSN.2011.5958223

[10] M. Poke and T. Hoefler, “Dare,” Proceedings of the 24th International
Symposium on High-Performance Parallel and Distributed Computing
- HPDC âĂŹ15, 2015. [Online]. Available: http://dx.doi.org/10.1145/
2749246.2749267

[11] M. Poke, “Algorithms for high-performance state-machine replication,”
Ph.D. dissertation, Helmut-Schmidt-UniversitÃďt, Holstenhofweg 85,
22043 Hamburg, 2019.

[12] M. Kogias and E. Bugnion, “Hovercraft,” Proceedings of the Fifteenth
European Conference on Computer Systems, Apr 2020. [Online].
Available: http://dx.doi.org/10.1145/3342195.3387545

[13] C. Wang, J. Jiang, X. Chen, N. Yi, and H. Cui, “Apus: fast and scalable
paxos on rdma,” 09 2017, pp. 94–107.

https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
http://dx.doi.org/10.1145/3373376.3378496
https://doi.org/10.1145/582318.582339
https://doi.org/10.1145/78969.78972
https://www.mellanox.com/related-docs/solutions/benefits-of-RDMA-over-routed-fabrics.pdf
https://www.mellanox.com/related-docs/solutions/benefits-of-RDMA-over-routed-fabrics.pdf
https://doi.org/10.1145/2740070.2626299
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://doi.org/10.1109/DSN.2011.5958223
http://dx.doi.org/10.1145/2749246.2749267
http://dx.doi.org/10.1145/2749246.2749267
http://dx.doi.org/10.1145/3342195.3387545

	Abstract
	1 Introduction
	2 Background
	3 Motivation
	4 Related Works
	5 Design
	5.1 Mu
	5.2 Hermes

	6 Evaluation
	7 Conclusion
	References

